skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


This content will become publicly available on September 1, 2025

Title: A Vision and Proof of Concept for New Approach to Monitoring for Safer Future Smart Transportation Systems
Transportation infrastructure experiences distress due to aging, overuse, and climate changes. To reduce maintenance costs and labor, researchers have developed various structural health monitoring systems. However, the existing systems are designed for short-term monitoring and do not quantify structural parameters. A long-term monitoring system that quantifies structural parameters is needed to improve the quality of monitoring. In this work, a novel Transportation Rf-bAsed Monitoring (TRAM) system is proposed. TRAM is a multi-parameter monitoring system that relies on embeddable backscatter-based, batteryless, and radio-frequency sensors. The system can monitor structural parameters with 3D spatial and temporal information. Laboratory experiments were conducted on a 1D scale to evaluate and examine the sensitivity and reliability of the monitored structural parameters, which are displacement and water content. In contrast to other existing methods, TRAM correlates phase change to the change in concerned parameters, enabling long-term monitoring.  more » « less
Award ID(s):
2329800 2329801 2329802
PAR ID:
10548502
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Sensors
Volume:
24
Issue:
18
ISSN:
1424-8220
Page Range / eLocation ID:
6018
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Dysphagia or difficulty swallowing is caused by the failure of neurological pathways to properly activate swallowing muscles. Current electromyography (EMG) systems for dysphagia monitoring are bulky and rigid, limiting their potential for long‐term and unobtrusive use. To address this, a machine learning‐assisted wearable EMG system is presented, utilizing self‐adhesive, skin‐conformal, semi‐transparent, and robust ionic gel electrodes. The presented electrodes possess good conductivity, superior skin contact, and good transmittance, ensuring high‐fidelity EMG sensing without impeding daily activities. Moreover, the optimized material and structural designs ensure wearing comfort and conformable skin‐electrode contact, allowing for long‐term monitoring with high accuracy. Machine learning and mel‐frequency cepstral coefficient techniques are employed to classify swallowing events based on food types and volumes. Through an analysis of electrode placement on the chin and neck, the proposed system is able to effectively distinguish between different food types and water volumes using a small number of channels, making it suitable for continuous dysphagia monitoring. This work represents an advancement in machine learning assisted EMG systems for the classification and regression of swallowing events, paving the way for more efficient, unobtrusive, and long‐term dysphagia monitoring systems. 
    more » « less
  2. Researchers have made substantial efforts to improve the measurement of structural reciprocal motion using radars in the last years. However, the signal-to-noise ratio of the radar’s received signal still plays an important role for long-term monitoring of structures that are susceptible to excessive vibration. Although the prolonged monitoring of structural deflections may provide paramount information for the assessment of structural condition, most of the existing structural health monitoring (SHM) works did not consider the challenges to handle long-term displacement measurements when the signal-to-noise ratio of the measurement is low. This may cause discontinuities in the detected reciprocal motion and can result in wrong assessments during the data analyses. This paper introduces a novel approach that uses a wavelet-based multi-resolution analysis to correct short-term distortions in the calculated displacements even when previously proposed denoising techniques are not effective. Experimental results are presented to validate and demonstrate the feasibility of the proposed algorithm. The advantages and limitations of the proposed approach are also discussed. 
    more » « less
  3. Abstract Understanding human mobility is of great significance for sustainable transportation planning. Long-term travel delay change is a key metric to measure human mobility evolution in cities. However, it is challenging to quantify the long-term travel delay because it happens in different modalities, e.g., subway, taxi, bus, and personal cars, with implicated coupling. More importantly, the data for long-term multi-modal delay modeling is challenging to obtain in practice. As a result, the existing travel delay measurements mainly focus on either single-modal system or short-term mobility patterns, which cannot reveal the long-term travel dynamics and the impact among multi-modal systems. In this paper, we perform a travel delay measurement study to quantify and understand long-term multi-modal travel delay. Our measurement study utilizes a 5-year dataset of 8 million residents from 2013 to 2017 including a subway system with 3 million daily passengers, a 15 thousand taxi system, a 10 thousand personal car system, and a 13 thousand bus system in the Chinese city Shenzhen. We share new observations as follows: (1) the aboveground system has a higher delay increase overall than that of the underground system but the increase of it is slow down; (2) the underground system infrastructure upgrades decreases the aboveground system travel delay increase in contrast to the increase the underground system travel delay caused by the aboveground system infrastructure upgrades; (3) the travel delays of the underground system decreases in the higher population region and during the peak hours. 
    more » « less
  4. Systems engineering has often concerned itself with how operator and customer roles change when systems change. In the context of automated vehicles (AVs), it has been assumed that operators will be removed from the system architecture; however, new insights reveal that the role of operators, typically thought of as drivers, has been transformed, not eliminated. In this study, we identify how different types of door-to-door transportation services use varying organizational architectures to achieve required functions, and explore how these architectures might this change with emergence of automated door-to-door transportation services. We draw on prior research, archival documents, and semi-structured interviews with AV technical and operational experts to identify and detail required functions for these services. Preliminary results reveal that, counter to the commonly-held belief, the structures of commercial AV services more closely parallel traditional taxi organizations rather than current ride-hailing services based on their capital cost and human labor requirements. Future research will explore short and long-term development pathways for AV systems and their associated structural and functional requirements. While the structures of these AV companies will continue to develop alongside the automation technologies, early explorations of AV organizations can reveal multiple possible development pathways for AV services and highlight potentially desirable or undesirable intermediary stages. 
    more » « less
  5. Fluorescent portable monitoring systems provide real-time and on-site analysis of a sample solution, avoiding transportation delays and solution degradation. However, some applications, such as environmental monitoring of bodies of water with algae pollution, rely on the temperature control that off-site systems provide for adequate solution results. The goal of this research is the development of a temperature stabilization module for a portable fluorescent sensing platform, which is necessary to prevent inaccurate results. Using a Peltier device-based system, the module heats/cools a solution through digital-to-analog control of the current, using three surface-mounted temperature modules attached to a copper cuvette holder, which is directly attached to the Peltier device. This system utilizes an in-house algorithm for control, which effectively minimizes temperature overshooting when a change is enacted. Finally, with the use of a sample fluorescent dye, Rhodamine B, the system’s controllability is highlighted through the monitoring of Rhodamine B’s fluorescence emission decrease as the solution temperature increases. 
    more » « less