skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Spin disorder control of topological spin texture
Abstract Stabilization of topological spin textures in layered magnets has the potential to drive the development of advanced low-dimensional spintronics devices. However, achieving reliable and flexible manipulation of the topological spin textures beyond skyrmion in a two-dimensional magnet system remains challenging. Here, we demonstrate the introduction of magnetic iron atoms between the van der Waals gap of a layered magnet, Fe3GaTe2, to modify local anisotropic magnetic interactions. Consequently, we present direct observations of the order-disorder skyrmion lattices transition. In addition, non-trivial topological solitons, such as skyrmioniums and skyrmion bags, are realized at room temperature. Our work highlights the influence of random spin control of non-trivial topological spin textures.  more » « less
Award ID(s):
1719875 2039380
PAR ID:
10548902
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The spin structure and transport behavior of B20-ordered CoSi nanomagnets are investigated experimentally and by theoretical calculations. B20 materials are of interest in spin electronics because their noncentrosymmetric crystal structure favors noncoplanar spin structures that yield a contribution to the Hall effect. However, stoichiometric bulk CoSi is nonmagnetic, and combining magnetic order at and above room temperature with small feature sizes has remained a general challenge. Our CoSi nanoclusters have an average size of 11.6 nm and a magnetic ordering temperature of 330 K. First-principle calculations and x-ray circular dichroism experiments show that the magnetic moment is predominantly confined to the shells of the clusters. The CoSi nanocluster ensemble exhibits a topological Hall effect, which is explained by an analytical model and by micromagnetic simulations on the basis of competing Dzyaloshinskii-Moriya and intra- and intercluster exchange interactions. The topological Hall effect is caused by formation of chiral spin textures in the shells of the clusters, which exhibit fractional skyrmion number and are therefore termed as paraskyrmions (closely related to skyrmion spin structures). This research shows how nanostructuring of a chiral atomic structure can create a spin-textured material with a topological Hall effect and a magnetic ordering temperature above room temperature. 
    more » « less
  2. Abstract The promise of high-density and low-energy-consumption devices motivates the search for layered structures that stabilize chiral spin textures such as topologically protected skyrmions. At the same time, recently discovered long-range intrinsic magnetic orders in the two-dimensional van der Waals materials provide a new platform for the discovery of novel physics and effects. Here we demonstrate the Dzyaloshinskii–Moriya interaction and Néel-type skyrmions are induced at the WTe 2 /Fe 3 GeTe 2 interface. Transport measurements show the topological Hall effect in this heterostructure for temperatures below 100 K. Furthermore, Lorentz transmission electron microscopy is used to directly image Néel-type skyrmion lattice and the stripe-like magnetic domain structures as well. The interfacial coupling induced Dzyaloshinskii–Moriya interaction is estimated to have a large energy of 1.0 mJ m −2 . This work paves a path towards the skyrmionic devices based on van der Waals layered heterostructures. 
    more » « less
  3. The interplay of charge, spin, lattice, and orbital degrees of freedom in correlated materials often leads to rich and exotic properties. Recent studies have brought new perspectives to bosonic collective excitations in correlated materials. For example, inelastic neutron scattering experiments revealed non-trivial band topology for magnons and spin–orbit excitons (SOEs) in a quantum magnet CoTiO3(CTO). Here, we report phonon properties resulting from a combination of strong spin–orbit coupling, large crystal field splitting, and trigonal distortion in CTO. Specifically, the interaction between SOEs and phonons endows chirality to two E g phonon modes and leads to large phonon magnetic moments observed in magneto-Raman spectra. The remarkably strong magneto-phononic effect originates from the hybridization of SOEs and phonons due to their close energy proximity. While chiral phonons have been associated with electronic topology in some materials, our work suggests opportunities may arise by exploring chiral phonons coupled to topological bosons. 
    more » « less
  4. Abstract Magnetic skyrmions are topologically nontrivial chiral spin textures that have potential applications in next‐generation energy‐efficient and high‐density spintronic devices. In general, the chiral spins of skyrmions are stabilized by the noncollinear Dzyaloshinskii–Moriya interaction (DMI), originating from the inversion symmetry breaking combined with the strong spin–orbit coupling (SOC). Here, the strong SOC from topological insulators (TIs) is utilized to provide a large interfacial DMI in TI/ferrimagnet heterostructures at room temperature, resulting in small‐size (radius ≈ 100 nm) skyrmions in the adjacent ferrimagnet. Antiferromagnetically coupled skyrmion sublattices are observed in the ferrimagnet by element‐resolved scanning transmission X‐ray microscopy, showing the potential of a vanishing skyrmion Hall effect and ultrafast skyrmion dynamics. The line‐scan spin profile of the single skyrmion shows a Néel‐type domain wall structure and a 120 nm size of the 180° domain wall. This work demonstrates the sizable DMI and small skyrmions in TI‐based heterostructures with great promise for low‐energy spintronic devices. 
    more » « less
  5. In magnetic pyrochlore materials, the interplay of spin-orbit coupling, electronic correlations, and geometrical frustration gives rise to exotic quantum phases, including topological semimetals and spin ice. While these phases have been observed in isolation, the interface-driven phenomena emerging from their interaction have never been realized previously. Here, we report on the discovery of interfacial electronic anisotropy and rotational symmetry breaking at a heterostructure consisting of the Weyl semimetal Eu2Ir2O7and spin ice Dy2Ti2O7. Subjected to magnetic fields, we unveil a sixfold anisotropic transport response that is theoretically accounted by a Kondo-coupled heterointerface, where the spin ice’s field-tuned magnetism induces electron scattering in the Weyl semimetal’s topological Fermi-arc states. Furthermore, at elevated magnetic fields, we reveal a twofold anisotropic response indicative of the emergence of a symmetry-broken many-body state. This discovery showcases the potential of pyrochlore frustrated magnet/topological semimetal heterostructures in search of emergent interfacial phenomena. 
    more » « less