Intrinsically disordered regions (IDRs) are important components of protein functionality, with their charge distribution serving as a key factor in determining their roles. Notably, many proteins possess IDRs that are highly negatively charged, characterized by sequences rich in aspartate (D) or glutamate (E) residues. Bioinformatic analyses indicate that negatively charged low-complexity IDRs are significantly more common than their positively charged counterparts rich in arginine (R) or lysine (K). For instance, sequences of 10 or more consecutive negatively charged residues (D or E) are present in 268 human proteins. In contrast, corresponding sequences of 10 or more consecutive positively charged residues (K or R) are present in only 12 human proteins. Interestingly, about 50% of proteins containing D/E tracts function as DNA-binding or RNA-binding proteins. Negatively charged IDRs can electrostatically mimic nucleic acids and dynamically compete with them for the DNA-binding domains (DBDs) or RNA-binding domains (RBDs) that are positively charged. This leads to a phenomenon known as autoinhibition, in which the negatively charged IDRs inhibit binding to nucleic acids by occupying the binding interfaces within the proteins through intramolecular interactions. Rather than merely reducing binding activity, negatively charged IDRs offer significant advantages for the functions of DNA/RNA-binding proteins. The dynamic competition between negatively charged IDRs and nucleic acids can accelerate the target search processes for these proteins. When a protein encounters DNA or RNA, the electrostatic repulsion force between the nucleic acids and the negatively charged IDRs can trigger conformational changes that allow the nucleic acids to access DBDs or RBDs. Additionally, when proteins are trapped at high-affinity non-target sites on DNA or RNA ("decoys"), the electrostatic repulsion from the negatively charged IDRs can rescue the proteins from these traps. Negatively charged IDRs act as gatekeepers, rejecting nonspecific ligands while allowing the target to access the molecular interfaces of DBDs or RBDs, which increases binding specificity. These IDRs can also promote proper protein folding, facilitate chromatin remodeling by displacing other proteins bound to DNA, and influence phase separation, affecting local pH. The functions of negatively charged IDRs can be regulated through protein-protein interactions, post-translational modifications, and proteolytic processing. These characteristics can be harnessed as tools for protein engineering. Some frame-shift mutations that convert negatively charged IDRs into positively charged ones are linked to human diseases. Therefore, it is crucial to understand the physicochemical properties and functional roles of negatively charged IDRs that compete with nucleic acids.
more »
« less
DR-BERT: A protein language model to annotate disordered regions
Despite their lack of a rigid structure, intrinsically disordered regions (IDRs) in proteins play important roles in cellular functions, including mediating protein-protein interactions. Therefore, it is important to computationally annotate IDRs with high accuracy. In this study, we present Disordered Region prediction using Bidirectional Encoder Representations from Transformers (DR-BERT), a compact protein language model. Unlike most popular tools, DR-BERT is pretrained on unannotated proteins and trained to predict IDRs without relying on explicit evolutionary or biophysical data. Despite this, DR-BERT demonstrates significant improvement over existing methods on the Critical Assessment of protein Intrinsic Disorder (CAID) evaluation dataset and outperforms competitors on two out of four test cases in the CAID 2 dataset, while maintaining competitiveness in the others. This performance is due to the information learned during pretraining and DR- BERT’s ability to use contextual information.
more »
« less
- Award ID(s):
- 2107344
- PAR ID:
- 10549924
- Publisher / Repository:
- Cell Press
- Date Published:
- Journal Name:
- Structure
- Volume:
- 32
- Issue:
- 8
- ISSN:
- 0969-2126
- Page Range / eLocation ID:
- 1260 to 1268.e3
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Intrinsically disordered regions (IDRs) carry out many cellular functions and vary in length and placement in protein sequences. This diversity leads to variations in the underlying compositional biases, which were demonstrated for the short vs. long IDRs. We analyze compositional biases across four classes of disorder: fully disordered proteins; short IDRs; long IDRs; and binding IDRs. We identify three distinct biases: for the fully disordered proteins, the short IDRs and the long and binding IDRs combined. We also investigate compositional bias for putative disorder produced by leading disorder predictors and find that it is similar to the bias of the native disorder. Interestingly, the accuracy of disorder predictions across different methods is correlated with the correctness of the compositional bias of their predictions highlighting the importance of the compositional bias. The predictive quality is relatively low for the disorder classes with compositional bias that is the most different from the “generic” disorder bias, while being much higher for the classes with the most similar bias. We discover that different predictors perform best across different classes of disorder. This suggests that no single predictor is universally best and motivates the development of new architectures that combine models that target specific disorder classes.more » « less
-
Disordered binding regions (DBRs), which are embedded within intrinsically disordered proteins or regions (IDPs or IDRs), enable IDPs or IDRs to mediate multiple protein-protein interactions. DBR-protein complexes were collected from the Protein Data Bank for which two or more DBRs having different amino acid sequences bind to the same (100% sequence identical) globular protein partner, a type of interaction herein called many-to-one binding. Two distinct binding profiles were identified: independent and overlapping. For the overlapping binding profiles, the distinct DBRs interact by means of almost identical binding sites (herein called “similar”), or the binding sites contain both common and divergent interaction residues (herein called “intersecting”). Further analysis of the sequence and structural differences among these three groups indicate how IDP flexibility allows different segments to adjust to similar, intersecting, and independent binding pockets.more » « less
-
Nucleoli are multicomponent condensates defined by coexisting sub-phases. We identified distinct intrinsically disordered regions (IDRs), including acidic (D/E) tracts and K-blocks interspersed by E-rich regions, as defining features of nucleolar proteins. We show that the localization preferences of nucleolar proteins are determined by their IDRs and the types of RNA or DNA binding domains they encompass. In vitro reconstitutions and studies in cells showed how condensation, which combines binding and complex coacervation of nucleolar components, contributes to nucleolar organization. D/E tracts of nucleolar proteins contribute to lowering the pH of co-condensates formed with nucleolar RNAs in vitro. In cells, this sets up a pH gradient between nucleoli and the nucleoplasm. By contrast, juxta-nucleolar bodies, which have different macromolecular compositions, featuring protein IDRs with very different charge profiles, have pH values that are equivalent to or higher than the nucleoplasm. Our findings show that distinct compositional specificities generate distinct physicochemical properties for condensates.more » « less
-
Abstract Intrinsically disordered protein regions (IDRs) are highly dynamic sequences that rapidly sample a collection of conformations over time. In the past several decades, IDRs have emerged as a major component of many proteomes, comprising ~30% of all eukaryotic protein sequences. Proteins with IDRs function in a wide range of biological pathways and are notably enriched in signaling cascades that respond to environmental stresses. Here, we identify and characterize intrinsic disorder in the soluble cytoplasmic N‐terminal domains of MSL8, MSL9, and MSL10, three members of the MscS‐like (MSL) family of mechanosensitive ion channels. In plants, MSL channels are proposed to mediate cell and organelle osmotic homeostasis. Bioinformatic tools unanimously predicted that the cytosolic N‐termini of MSL channels are intrinsically disordered. We examined the N‐terminus of MSL10 (MSL10 N ) as an exemplar of these IDRs and circular dichroism spectroscopy confirms its disorder. MSL10 N adopted a predominately helical structure when exposed to the helix‐inducing compound trifluoroethanol (TFE). Furthermore, in the presence of molecular crowding agents, MSL10 N underwent structural changes and exhibited alterations to its homotypic interaction favorability. Lastly, interrogations of collective behavior via in vitro imaging of condensates indicated that MSL8 N , MSL9 N , and MSL10 N have sharply differing propensities for self‐assembly into condensates, both inherently and in response to salt, temperature, and molecular crowding. Taken together, these data establish the N‐termini of MSL channels as intrinsically disordered regions with distinct biophysical properties and the potential to respond uniquely to changes in their physiochemical environment.more » « less
An official website of the United States government

