Abstract Over the past decade, solid‐state batteries have garnered significant attentions due to their potentials to deliver high energy density and excellent safety. Considering the abundant sodium (Na) resources in contrast to lithium (Li), the development of sodium‐based batteries has become increasingly appealing. Sulfide‐based superionic conductors are widely considered as promising solid eletcrolytes (SEs) in solid‐state Na batteries due to the features of high ionic conductivity and cold‐press densification. In recent years, tremendous efforts have been made to investigate sulfide‐based Na‐ion conductors on their synthesis, compositions, conductivity, and the feasibility in batteries. However, there are still several challenges to overcome for their practical applications in high performance solid‐state Na batteries. This article provides a comprehensive update on the synthesis, structure, and properties of three dominant sulfide‐based Na‐ion conductors (Na3PS4, Na3SbS4, and Na11Sn2PS12), and their families that have a variety of anion and cation doping. Additionally, the interface stability of these sulfide electrolytes toward the anode is reviewed, as well as the electrochemical performance of solid‐state Na batteries based on different types of cathode materials (metal sulfides, oxides, and organics). Finally, the perspective and outlook for the development and practical utilization of sulfide‐based SE in solid‐state batteries are discussed. 
                        more » 
                        « less   
                    
                            
                            Self‐Templated 3D Sulfide‐Based Solid Composite Electrolyte for Solid‐State Sodium Metal Batteries
                        
                    
    
            Abstract Rechargeable solid‐state sodium metal batteries (SSMBs) experience growing attention owing to the increased energy density (vs Na‐ion batteries) and cost‐effective materials. Inorganic sulfide‐based Na‐ion conductors also possess significant potential as promising solid electrolytes (SEs) in SSMBs. Nevertheless, due to the highly reactive Na metal, poor interface compatibility is the biggest obstacle for inorganic sulfide solid electrolytes such as Na3SbS4to achieve high performance in SSMBs. To address such electrochemical instability at the interface, new design of sulfide SE nanostructures and interface engineering are highly essential. In this work, a facile and straightforward approach is reported to prepare 3D sulfide‐based solid composite electrolytes (SCEs), which utilize porous Na3SbS4(NSS) as a self‐templated framework and fill with a phase transition polymer. The 3D structured SCEs display obviously improved interface stability toward Na metal than pristine sulfide. The assembled SSMBs (with TiS2or FeS2as cathodes) deliver outstanding electrochemical cycling performance. Moreover, the cycling of high‐voltage oxide cathode Na0.67Ni0.33Mn0.67O2(NNMO) is also demonstrated in SSMBs using 3D sulfide‐based SCEs. This study presents a novel design on the self‐templated nanostructure of SCEs, paving the way for the advancement of high‐energy sodium metal batteries. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2047460
- PAR ID:
- 10553188
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Small
- ISSN:
- 1613-6810
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract All-solid-state sodium batteries (ASSSBs) are promising candidates for grid-scale energy storage. However, there are no commercialized ASSSBs yet, in part due to the lack of a low-cost, simple-to-fabricate solid electrolyte (SE) with electrochemical stability towards Na metal. In this work, we report a family of oxysulfide glass SEs (Na 3 PS 4− x O x , where 0 < x ≤ 0.60) that not only exhibit the highest critical current density among all Na-ion conducting sulfide-based SEs, but also enable high-performance ambient-temperature sodium-sulfur batteries. By forming bridging oxygen units, the Na 3 PS 4− x O x SEs undergo pressure-induced sintering at room temperature, resulting in a fully homogeneous glass structure with robust mechanical properties. Furthermore, the self-passivating solid electrolyte interphase at the Na|SE interface is critical for interface stabilization and reversible Na plating and stripping. The new structural and compositional design strategies presented here provide a new paradigm in the development of safe, low-cost, energy-dense, and long-lifetime ASSSBs.more » « less
- 
            Abstract Chalcogenide superionic sodium (Na) conductors have great potential as solid electrolytes (SEs) in all‐solid‐state Na batteries with advantages of high energy density, safety, and cost effectiveness. The crystal structures and ionically conductive properties of solid Na‐ion conductors are strongly influenced by synthetic approaches and processing parameters. Thus, understanding the synthesis process is essential to control the structures and phases and to obtain Na‐ion conductors with desirable properties. Thanks to the high‐flux and deep‐penetrating time‐of‐flight neutron diffraction (ND), in‐situ experiments were able to track real‐time structural changes of two chalcogenide SEs (Na3SbS4and Na3SbS3.5Se0.5) during the solid‐state synthesis. For these two conductors, the ND results revealed a fast one‐step reaction for the synthesis and the molten process when heating up, and the recrystallization as well as the cubic‐to‐tetragonal phase transition up on cooling. Moreover, Se‐doping was found to influence the reaction temperatures, lattice parameter, and structure stability based on neutron experimental observations and theoretical simulation. This work presents a detailed structural study using in‐situ ND technology for the solid synthesis process of chalcogenide Na‐ion conductors, beneficial for the design and synthesis of new solid‐state conductors.more » « less
- 
            Sodium thioantimonate (Na 3 SbS 4 ) is an attractive solid-state electrolyte for sodium-ion batteries due to its high ionic conductivity and stability in protic solvents. Herein, we describe solution-based routes for its synthesis. First, we demonstrate the synthesis of the Sb 2 S 3 precursor via thermodynamically favorable metathesis between Na 2 S and SbCl 3 . This solution-based approach is further extended to couple the resulting Sb 2 S 3 with Na 2 S for the synthesis of Na 3 SbS 4 . It is shown that ethanol is a superior solvent to water for solution-based synthesis of Na 3 SbS 4 with respect to yield, morphology, and performance. Amorphous Sb 2 S 3 synthesized from low-temperature metathesis produced highly crystalline Na 3 SbS 4 with a room temperature Na + conductivity of 0.52 mS cm −1 and low activation energy, comparable to leading values reported in the literature.more » « less
- 
            Abstract Benefiting from abundant resource reserves and considerable theoretical capacity, sodium (Na) metal is a strong anode candidate for low‐cost, large‐scale energy storage applications. However, extensive volume change and mossy/dendritic growth during Na electrodeposition have impeded the practical application of Na metal batteries. Herein, a self‐sodiophilic carbon host, lignin‐derived carbon nanofiber (LCNF), is reported to accommodate Na metal through an infiltration method. Na metal is completely encapsulated in the 3D space of the LCNF host, where the strong interaction between LCNF and Na metal is mediated by the self‐sodiophilic sites. The resulting LCNF@Na electrode delivers good cycling stability with a low voltage hysteresis and a dendrite‐free morphology in commercial carbonate‐based electrolytes. When interfaced with O3‐NaNi0.33Mn0.33Fe0.33O2and P2‐Na0.7Ni0.33Mn0.55Fe0.1Ti0.02O2cathodes in full cell Na metal batteries, the LCNF@Na electrode enables high capacity retentions, long cycle life, and good rate capability. Even in a “lean” Na anode environment, the full cells can still deliver good electrochemical performance. The overall stable battery performance, based on a self‐sodiophilic, biomass‐derived carbon host, illuminates a promising path towards enabling low‐cost Na metal batteries.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
