skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluating surface and subsurface fluxes in hydrological models to advance basin-scale operational water supply forecasting
Comprehensive assessments of hydrological components are crucial for enhancing operational water supply simulations. However, hydrological models are often evaluated based on their surface flow simulations, while the validation of subsurface and groundwater components tends to be overlooked or not well documented. In this study, we evaluated the outputs of two hydrological models, the Large Basin Runoff Model (LBRM) and the Weather Research and Forecasting – Hydrological modeling extension package (WRF-Hydro), for potential implementation in operational water balance forecasting in the Great Lakes region. We examined the simulated hydrological variables including surface (e.g. snow water equivalent, evapotranspiration, and streamflow), subsurface (e.g. soil moisture at different layers), and groundwater components with observed or reference data from ground-based stations and remotely sensed images. The findings of this study provide valuable insights into the capabilities and limitations of each model. These findings contribute to more informed water management strategies for the Great Lakes region.  more » « less
Award ID(s):
2330317
PAR ID:
10553902
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Taylor and Francis Online
Date Published:
Journal Name:
Hydrological Sciences Journal
Volume:
69
Issue:
11
ISSN:
0262-6667
Page Range / eLocation ID:
1539 to 1556
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Groundwater plays a significant role in the vitality of the Great Lakes Basin, supplying water for various sectors. Due to the interconnection of groundwater and surface water features in this region, the groundwater quality can be affected, leading to potential economic, political, health, and social issues for the region. Groundwater resources have received less emphasis, perhaps due to an “out of sight, out of mind” mentality. The incomplete characterization of groundwater, especially shallow, near-surface waters in urban centers, is an added source of environmental vulnerability for the Great Lakes Basin. This paper provides an improved understanding of urban groundwater to reduce this vulnerability. Towards that end, two approaches for improved characterization of groundwater in southeast Michigan are employed in this project. In the first approach, we construct a regional groundwater model that encompasses four major watersheds to define the large-scale groundwater features. In the second approach, we adopt a local scale and develop a local urban water budget with subsequent groundwater simulation. The results show the groundwater movement in the two different scales, implying the effect of urban settings on the subsurface resources. Both the regional and local scale models can be used to evaluate and mitigate environmental risks in urban centers. 
    more » « less
  2. Abstract The land surface hydrology of the North American Great Lakes region regulates ecosystem water availability, lake levels, vegetation dynamics, and agricultural practices. In this study, we analyze the Great Lakes terrestrial water budget using the Noah‐MP land surface model to characterize the catchment hydrological regimes and identify the dominant quantities contributing to the variability in the land surface hydrology. We show that the Great Lakes domain is not hydrologically uniform and strong spatiotemporal differences exist in the regulators of the hydrological budget at daily, monthly, and annual timescales. Subseasonally, precipitation and soil moisture explain nearly all the terrestrial water budget variability in the southern basins, while the northern latitudes are snow‐dominated regimes. Seasonal assessments reveal greater differences among the basins. Precipitation, evaporation, and runoff are the dominant sources of variability at lower latitudes, while at higher latitudes, terrestrial water storage in the form of ground snowpack and soil moisture has the leading role. Differences in land cover categorizations, for example, croplands, forests, or urban zones, further induce spatial differences in the hydrological characteristics. This quantification of variability in the terrestrial water cycle embedded at different temporal scales is important to assess the impacts of changes in climate and land cover on catchment sensitivities across the diverse hydroclimate of the Great Lakes region. 
    more » « less
  3. Abstract Water temperature dynamics in large inland lakes are interrelated with internal lake physics, ecosystem function, and adjacent land surface meteorology and climatology. Models for simulating and forecasting lake temperatures often rely on remote sensing andin situdata for validation.In situmonitoring platforms have the benefit of providing relatively precise measurements at multiple lake depths, but are often sparser (temporally and spatially) than remote sensing data. Here, we address the challenge of synthesizingin situlake temperature data by creating a standardized database of near-surface and subsurface measurements from 134 sites across 29 large North American lakes, with the primary goal of supporting an ongoing lake model validation study. We utilize data sources ranging from federal agency repositories to local monitoring group samples, with a collective historical record spanning January 1, 2000 through December 31, 2022. Our database has direct utility for validating simulations and forecasts from operational numerical weather prediction systems in large lakes whose extensive surface area may significantly influence nearby weather and climate patterns. 
    more » « less
  4. Abstract Both hydrological and geophysical data can be used to calibrate hillslope hydrologic models. However, these data often reflect hydrological dynamics occurring at disparate spatial scales. Their use as sole objectives in model calibrations may thus result in different optimum hydraulic parameters and hydrologic model behavior. This is especially true for mountain hillslopes where the subsurface is often heterogeneous and the representative elementary volume can be on the scale of several m3. This study explores differences in hydraulic parameters and hillslope‐scale storage and flux dynamics of models calibrated with different hydrological and geophysical data. Soil water content, groundwater level, and two time‐lapse electrical resistivity tomography (ERT) data sets (transfer resistance and inverted resistivity) from two mountain hillslopes in Wyoming, USA, are used to calibrate physics‐based surface–subsurface hydrologic models of the hillslopes. Calibrations are performed using each data set independently and all data together resulting in five calibrated parameter sets at each site. Model predicted hillslope runoff and internal hydrological dynamics vary significantly depending on the calibration data set. Results indicate that water content calibration data yield models that overestimate near‐surface water storage in mountain hillslopes. Groundwater level calibration data yield models that more reasonably represent hillslope‐scale storage and flux dynamics. Additionally, ERT calibration data yield models with reasonable hillslope runoff predictions but relatively poor predictions of internal hillslope dynamics. These observations highlight the importance of carefully selecting data for hydrologic model calibration in mountain environments. Poor selection of calibration data may yield models with limited predictive capability depending on modeling goals and model complexity. 
    more » « less
  5. Groundwater historically has been a critical but understudied, underfunded, and underappreciated natural resource, although recent challenges associated with both groundwater quantity and quality have raised its profile. This is particularly true in the Laurentian Great Lakes (LGL) region, where the rich abundance of surface water results in the perception of an unlimited water supply but limited attention on groundwater resources. As a consequence, groundwater management recommendations in the LGL have been severely constrained by our lack of information. To address this information gap, a virtual summit was held in June 2021 that included invited participants from local, state, and federal government entities, universities, non-governmental organizations, and private firms in the region. Both technical (e.g., hydrologists, geologists, ecologists) and policy experts were included, and participants were assigned to an agricultural, urban, or coastal wetland breakout group in advance, based on their expertise. The overall goals of this groundwater summit were fourfold: (1) inventory the key (grand) challenges facing groundwater in Michigan; (2) identify the knowledge gaps and scientific needs, as well as policy recommendations, associated with these challenges; (3) construct a set of conceptual models that elucidate these challenges; and (4) develop a list of (tractable) next steps that can be taken to address these challenges. Absent this type of information, the sustainability of this critical resource is imperiled. 
    more » « less