Climate change necessitates a global effort to reduce greenhouse gas emissions while adapting to increased climate risks. This broader climate transition will involve large-scale global interventions including renewable energy deployment, coastal protection and retreat, and enhanced space cooling, all of which will result in CO 2 emissions from energy and materials use. Yet, the magnitude of the emissions embedded in these interventions remains unconstrained, opening the potential for underaccounting of emissions and conflicts or synergies between mitigation and adaptation goals. Here, we use a suite of models to estimate the CO 2 emissions embedded in the broader climate transition. For a gradual decarbonization pathway limiting warming to 2 °C, selected adaptation-related interventions will emit ∼1.3 GtCO 2 through 2100, while emissions from energy used to deploy renewable capacity are much larger at ∼95 GtCO 2 . Together, these emissions are equivalent to over 2 y of current global emissions and 8.3% of the remaining carbon budget for 2 °C. Total embedded transition emissions are reduced by ∼80% to 21.2 GtCO 2 under a rapid pathway limiting warming to 1.5 °C. However, they roughly double to 185 GtCO 2 under a delayed pathway consistent with current policies (2.7 °C warming by 2100), mainly because a slower transition relies more on fossil fuel energy. Our results provide a holistic assessment of carbon emissions from the transition itself and suggest that these emissions can be minimized through more ambitious energy decarbonization. We argue that the emissions from mitigation, but likely much less so from adaptation, are of sufficient magnitude to merit greater consideration in climate science and policy.
more »
« less
Integrated Ex-Ante Life Cycle Assessment and Techno-Economic Analysis of Biomass Conversion Technologies Featuring Evolving Environmental Policies
Biorefineries can reduce carbon dioxide emissions while serving the global chemical demand market. Governments are also using carbon pricing policies, such as carbon taxes, cap-and-trade models, and carbon caps, as a strategy to reduce emissions. The use of biomass feedstocks in conjunction with carbon capture usage and storage technologies are mitigation strategies for global warming. Businesses can invest in these technologies to accommodate the adoption of these policies. Rapid action is necessary to halt global warming, which results in aggressive policies. In this work, a multi-period process design and planning problem is developed for the design and capacity expansion of biorefineries. The three carbon pricing policies are integrated into the model and parameters are selected according to the aggressive scenario denoted by the Paris Agreement. The results show that the cap-and-trade policy achieves a higher net present value evaluation over the carbon tax model across all pareto points due to the flexibility of the allowances in the cap-and-trade policy. The carbon cap model substantial investments are required in carbon capture technologies to adhere to the emissions constraints.
more »
« less
- Award ID(s):
- 2134471
- PAR ID:
- 10556816
- Publisher / Repository:
- Systems and Control Transactions
- Date Published:
- ISBN:
- 978-1-7779403-2-4
- Page Range / eLocation ID:
- 757 to 762
- Format(s):
- Medium: X
- Location:
- Breckenridge, Colorado, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This article describes a new fact, then analyzes its causes and consequences: in most countries, import tariffs and nontariff barriers are substantially lower on dirty than on clean industries, where an industry’s “dirtiness” is defined as its carbon dioxide (CO2) emissions per dollar of output. This difference in trade policy creates a global implicit subsidy to CO2 emissions in internationally traded goods and contributes to climate change. This global implicit subsidy to CO2 emissions totals several hundred billion dollars annually. The greater protection of downstream industries, which are relatively clean, substantially accounts for this pattern. The downstream pattern can be explained by theories where industries lobby for low tariffs on their inputs but final consumers are poorly organized. A quantitative general equilibrium model suggests that if countries applied similar trade policies to clean and dirty goods, global CO2 emissions would decrease and global real income would change little.more » « less
-
Climate change has intensified the scale of global wildfire impacts in recent decades. In order to reduce fire impacts, management policies are being proposed in the western United States to lower fire risk that focus on harvesting trees, including large-diameter trees. Many policies already do not include diameter limits and some recent policies have proposed diameter increases in fuel reduction strategies. While the primary goal is fire risk reduction, these policies have been interpreted as strategies that can be used to save trees from being killed by fire, thus preventing carbon emissions and feedbacks to climate warming. This interpretation has already resulted in cutting down trees that likely would have survived fire, resulting in forest carbon losses that are greater than if a wildfire had occurred. To help policymakers and managers avoid these unintended carbon consequences and to present carbon emission sources in the same context, we calculate western United States forest fire carbon emissions and compare them with harvest and fossil fuel emissions (FFE) over the same timeframe. We find that forest fire carbon emissions are on average only 6% of anthropogenic FFE over the past decade. While wildfire occurrence and area burned have increased over the last three decades, per area fire emissions for extreme fire events are relatively constant. In contrast, harvest of mature trees releases a higher density of carbon emissions (e.g., per unit area) relative to wildfire (150–800%) because harvest causes a higher rate of tree mortality than wildfire. Our results show that increasing harvest of mature trees to save them from fire increases emissions rather than preventing them. Shown in context, our results demonstrate that reducing FFEs will do more for climate mitigation potential (and subsequent reduction of fire) than increasing extractive harvest to prevent fire emissions. On public lands, management aimed at less-intensive fuels reduction (such as removal of “ladder” fuels, i.e., shrubs and small-diameter trees) will help to balance reducing catastrophic fire and leave live mature trees on the landscape to continue carbon uptake.more » « less
-
Abstract Anthropogenic aerosols are hazardous to human health but have helped offset warming from greenhouse gases (GHGs), creating a potential regulatory tradeoff. As countries implement their GHG reduction targets under the Paris climate agreement, the co‐emissions of aerosols and their precursors will also change. Since these co‐emissions vary by country and by economic sector, each country will face different tradeoffs between aerosol‐driven health or temperature co‐benefits. We combine simple parameterizations of physical processes and health outcomes to examine three idealized climate policy approaches that are consistent with the Paris Agreement targets, which (i) optimize for local air quality, (ii) reduce global temperature change, or (iii) reduce emissions equally from all domestic economic sectors. We evaluate aerosol impacts on premature mortality and global mean temperature change under these three policy approaches and find that by 2030 the three policies yield differences of over 1 million annual premature deaths and global temperature differences of the same magnitude as those from GHG reductions. We also show that implementing equal reductions between all economic sectors can actually result in less beneficial health and temperature outcomes than either of the other options, especially in less industrialized regions. We therefore conclude that aerosol‐related co‐benefits and aerosol accounting guidelines should be explicitly considered in setting international climate policy.more » « less
-
Given the increasing occurrence of high-impact low-probability (HILP) contingencies in existing power systems, strengthening the resilience of these systems has become of paramount importance. Enhancing the resilience of power systems is not solely a technical issue but also a socio-economic and policy concern. Therefore, improving the performance of power systems greatly relies on the guidance provided by energy policies. While the decarbonization response, supported by these policies to mitigate climate change, influences the adoption of energy technologies, its impact on the resilience of the system remains uncertain. To uncover the interactions between technologies, policies, and economics concerning power systems resilience, this study focuses on constructing resilience-oriented networked microgrid systems. It develops a two-stage stochastic programming model by integrating a method for selecting power outage scenarios identified by users, in the presence of emissions policies. The results confirm the contributions of integrated systems in enhancing resilience, but they also reveal that low-carbon emissions policies play an inhibiting role by increasing the financial costs associated with resilience planning and operations. Nevertheless, a 30% emissions reduction threshold can still be achieved from the integrated network, facilitating the dual benefits of maximizing emissions reduction and minimizing the burden of emissions taxes. The study's contributions are threefold: firstly, it incorporates techno-economic incentives and regulations simultaneously; secondly, it quantifies the unintended consequences of policies on resilience; and thirdly, it provides constructive guidance for future energy policymaking, particularly in maintaining system resilience.more » « less
An official website of the United States government

