skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Space-time generalization of mutual information
A<sc>bstract</sc> The mutual information characterizes correlations between spatially separated regions of a system. Yet, in experiments we often measure dynamical correlations, which involve probing operators that are also separated in time. Here, we introduce a space-time generalization of mutual information which, by construction, satisfies several natural properties of the mutual information and at the same time characterizes correlations across subsystems that are separated in time. In particular, this quantity, that we call thespace-time mutual information, bounds all dynamical correlations. We construct this quantity based on the idea of the quantum hypothesis testing. As a by-product, our definition provides a transparent interpretation in terms of an experimentally accessible setup. We draw connections with other notions in quantum information theory, such as quantum channel discrimination. Finally, we study the behavior of the space-time mutual information in several settings and contrast its long-time behavior in many-body localizing and thermalizing systems.  more » « less
Award ID(s):
2111998
PAR ID:
10557737
Author(s) / Creator(s):
; ;
Publisher / Repository:
Journal of High Energy Physics
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2024
Issue:
5
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> We explore a large class of correlation measures called theα−zRényi mutual informations (RMIs). Unlike the commonly used notion of RMI involving linear combinations of Rényi entropies, theα−zRMIs are positive semi-definite and monotonically decreasing under local quantum operations, making them sensible measures of total (quantum and classical) correlations. This follows from their descendance from Rényi relative entropies. In addition to upper bounding connected correlation functions between subsystems, we prove the much stronger statement that for certain values ofαandz, theα−zRMIs also lower bound certain connected correlation functions. We develop an easily implementable replica trick which enables us to compute theα−zRMIs in a variety of many-body systems including conformal field theories, free fermions, random tensor networks, and holography. 
    more » « less
  2. A<sc>bstract</sc> We compute the ZZ annulus one-point function of the cosmological constant operator in non-critical string theory, regulating divergences from the boundaries of moduli space using string field theory. We identify a subtle issue in a previous analysis of these divergences, which was done in the context of thec= 1 string theory, and where it had led to a mismatch with the prediction from the dual matrix quantum mechanics. After fixing this issue, we find a precise match to the expected answer in both thec< 1 andc= 1 cases. We also compute the disk two-point function, which is a quantity of the same order, and show that it too matches with the general prediction. 
    more » « less
  3. Strong quantum correlated sources are essential but delicate resources for quantum information science and engineering protocols. Decoherence and loss are the two main disruptive processes that lead to the loss of nonclassical behavior in quantum correlations. In quantum systems, scattering can contribute to both decoherence and loss. In this work, we present an experimental scheme capable of significantly mitigating the adverse impact of scattering in quantum systems. Our quantum system is composed of a two-mode squeezed light generated with the four-wave-mixing process in hot rubidium vapor and a scatterer is introduced to one of the two modes. An integrating sphere is then placed after the scatterer to recollect the scattered photons. We use mutual information between the two modes as the measure of quantum correlations and demonstrate a 47.5% mutual information recovery from scattering, despite an enormous photon loss of greater than 85%. Our scheme is the very first step toward recovering quantum correlations from disruptive random processes and thus has the potential to bridge the gap between proof-of-principle demonstrations and practical real-world implementations of quantum protocols. Published by the American Physical Society2024 
    more » « less
  4. A<sc>bstract</sc> Electric fields can spontaneously decay via the Schwinger effect, the nucleation of a charged particle-anti particle pair separated by a critical distanced. What happens if the available distance is smaller thand? Previous work on this question has produced contradictory results. Here, we study the quantum evolution of electric fields when the field points in a compact direction with circumferenceL < dusing the massive Schwinger model, quantum electrodynamics in one space dimension with massive charged fermions. We uncover a new and previously unknown set of instantons that result in novel physics that disagrees with all previous estimates. In parameter regimes where the field value can be well-defined in the quantum theory, generic initial fieldsEare in factstable and do not decay, while initial values that are quantized in half-integer units of the chargeE= (k/2)gwithk∈ ℤoscillate in timefrom +(k/2)gto−(k/2)g, with exponentially small probability of ever taking any other value. We verify our results with four distinct techniques: numerically by measuring the decay directly in Lorentzian time on the lattice, numerically using the spectrum of the Hamiltonian, numerically and semi-analytically using the bosonized description of the Schwinger model, and analytically via our instanton estimate. 
    more » « less
  5. A<sc>bstract</sc> The eigenstate thermalization hypothesis (ETH) is the leading conjecture for the emergence of statistical mechanics in generic isolated quantum systems and is formulated in terms of the matrix elements of operators. An analog known as the ergodic bipartition (EB) describes entanglement and locality and is formulated in terms of the components of eigenstates. In this paper, we significantly generalize the EB and unify it with the ETH, extending the EB to study higher correlations and systems out of equilibrium. Our main result is a diagrammatic formalism that computes arbitrary correlations between eigenstates and operators based on a recently uncovered connection between the ETH and free probability theory. We refer to the connected components of our diagrams as generalized free cumulants. We apply our formalism in several ways. First, we focus on chaotic eigenstates and establish the so-called subsystem ETH and the Page curve as consequences of our construction. We also improve known calculations for thermal reduced density matrices and comment on an inherently free probabilistic aspect of the replica approach to entanglement entropy previously noticed in a calculation for the Page curve of an evaporating black hole. Next, we turn to chaotic quantum dynamics and demonstrate the ETH as a sufficient mechanism for thermalization, in general. In particular, we show that reduced density matrices relax to their equilibrium form and that systems obey the Page curve at late times. We also demonstrate that the different phases of entanglement growth are encoded in higher correlations of the EB. Lastly, we examine the chaotic structure of eigenstates and operators together and reveal previously overlooked correlations between them. Crucially, these correlations encode butterfly velocities, a well-known dynamical property of interacting quantum systems. 
    more » « less