skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Marine Protected Areas That Preserve Trophic Cascades Promote Resilience of Kelp Forests to Marine Heatwaves
ABSTRACT Under accelerating threats from climate‐change impacts, marine protected areas (MPAs) have been proposed as climate‐adaptation tools to enhance the resilience of marine ecosystems. Yet, debate persists as to whether and how MPAs may promote resilience to climate shocks. Here, we use 38 years of satellite‐derived kelp cover to empirically test whether a network of 58 temperate coastal MPAs in Central and Southern California enhances the resistance of kelp forest ecosystems to, and their recovery from, the unprecedented 2014–2016 marine heatwave regime that occurred in the region. We also leverage a 22‐year time series of subtidal community surveys to mechanistically understand whether trophic cascades explain emergent patterns in kelp forest resilience within MPAs. We find that fully protected MPAs significantly enhance kelp forests' resistance to and recovery from marine heatwaves in Southern California, but not in Central California. Differences in regional responses to the heatwaves are partly explained by three‐level trophic interactions comprising kelp, urchins, and predators of urchins. Urchin densities in Southern California MPAs are lower within fully protected MPAs during and after the heatwave, while the abundances of their main predators—lobster and sheephead—are higher. In Central California, a region without lobster or sheephead, there is no significant difference in urchin or kelp densities within MPAs as the current urchin predator, the sea otter, is protected statewide. Our analyses show that fully protected MPAs can be effective climate‐adaptation tools, but their ability to enhance resilience to extreme climate events depends upon region‐specific environmental and trophic interactions. As nations progress to protect 30% of the oceans by 2030, scientists and managers should consider whether protection will increase resilience to climate‐change impacts given their local ecological contexts, and what additional measures may be needed.  more » « less
Award ID(s):
2425417 2108566 1831937
PAR ID:
10559815
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
30
Issue:
12
ISSN:
1354-1013
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Marine protected areas (MPAs) have gained attention as a conservation tool for enhancing ecosystem resilience to climate change. However, empirical evidence explicitly linking MPAs to enhanced ecological resilience is limited and mixed. To better understand whether MPAs can buffer climate impacts, we tested the resistance and recovery of marine communities to the 2014–2016 Northeast Pacific heatwave in the largest scientifically designed MPA network in the world off the coast of California, United States. The network consists of 124 MPAs (48 no‐take state marine reserves, and 76 partial‐take or special regulation conservation areas) implemented at different times, with full implementation completed in 2012. We compared fish, benthic invertebrate, and macroalgal community structure inside and outside of 13 no‐take MPAs across rocky intertidal, kelp forest, shallow reef, and deep reef nearshore habitats in California's Central Coast region from 2007 to 2020. We also explored whether MPA features, including age, size, depth, proportion rock, historic fishing pressure, habitat diversity and richness, connectivity, and fish biomass response ratios (proxy for ecological performance), conferred climate resilience for kelp forest and rocky intertidal habitats spanning 28 MPAs across the full network. Ecological communities dramatically shifted due to the marine heatwave across all four nearshore habitats, and MPAs did not facilitate habitat‐wide resistance or recovery. Only in protected rocky intertidal habitats did community structure significantly resist marine heatwave impacts. Community shifts were associated with a pronounced decline in the relative proportion of cold water species and an increase in warm water species. MPA features did not explain resistance or recovery to the marine heatwave. Collectively, our findings suggest that MPAs have limited ability to mitigate the impacts of marine heatwaves on community structure. Given that mechanisms of resilience to climate perturbations are complex, there is a clear need to expand assessments of ecosystem‐wide consequences resulting from acute climate‐driven perturbations, and the potential role of regulatory protection in mitigating community structure changes. 
    more » « less
  2. Abstract Marine protected areas (MPAs) are an important tool for conserving coastal marine ecosystems, with well‐documented benefits for fished species. However, their potential to benefit non‐exploited species, such as primary producers in kelp forest ecosystems, is less well understood, particularly under escalating climate change impacts.In this study, we used four decades of remote sensing to examine the effects of 54 MPAs on kelp canopy coverage and assess how these effects influence kelp resilience to marine heatwaves. We developed a method for identifying paired reference (control) sites using historical satellite data and then used Before‐After Control‐Impact Paired Series analysis to examine whether the implementation of MPAs leads to increases in kelp coverage. In addition to examining changes in kelp coverage before and after MPA implementation, we also analysed the effect of MPAs on the resistance and recovery of kelp canopy coverage to a series of severe marine heatwaves in the North Pacific between 2014 and 2016.We found that the implementation of MPAs led to a modest positive effect with an 8.5% increase in kelp coverage compared to reference areas, though effects varied across MPAs.The positive effect of MPAs became more evident following the marine heatwaves, with kelp forests in MPAs showing greater recovery than in reference sites, particularly in southern California.Synthesis and applications. Our results provide empirical evidence of the potential role of MPAs as climate adaptation tools and highlight that well‐managed MPAs can support ecosystem stability under increasing climate stress. 
    more » « less
  3. Abstract Kelp forests are one of the earth’s most productive ecosystems and are at great risk from climate change, yet little is known regarding their current conservation status and global future threats. Here, by combining a global remote sensing dataset of floating kelp forests with climate data and projections, we find that exposure to projected marine heatwaves will increase ~6 to ~16 times in the long term (2081–2100) compared to contemporary (2001–2020) exposure. While exposure will intensify across all regions, some southern hemisphere areas which have lower exposure to contemporary and projected marine heatwaves may provide climate refugia for floating kelp forests. Under these escalating threats, less than 3% of global floating kelp forests are currently within highly restrictive marine protected areas (MPAs), the most effective MPAs for protecting biodiversity. Our findings emphasize the urgent need to increase the global protection of floating kelp forests and set bolder climate adaptation goals. 
    more » « less
  4. In marine ecosystems, fishing often targets predators, which can drive direct and indirect effects on entire food webs. Marine reserves can induce trophic cascades by increasing predator density and body size, thereby increasing predation pressure on populations of herbivores, such as sea urchins. In California's northern Channel Islands, two species of sea urchins are abundant: the red urchin Mesocentrotus franciscanus , which is targeted by an economically valuable fishery, and the virtually unfished purple urchin Strongylocentrotus purpuratus . We hypothesized that urchin populations inside marine reserves would be depressed by higher predation, but that red urchins would be less affected due to fishing outside reserves. Instead, our analyses revealed that purple urchin populations were unaffected by reserves, and red urchin biomass significantly increased in response to protection. Therefore, urchin biomass overall has increased inside reserves, and we found no evidence that giant kelp is positively affected by reserves. Our results reveal the overwhelming direct effect of protecting fished species in marine reserves over indirect effects that are often predicted but seldom clearly documented. Indirect effects due to marine reserves may eventually occur in some cases, but very effective predators, large reserves or extended time periods may be needed to induce them. 
    more » « less
  5. null (Ed.)
    Abstract Climate change is responsible for increased frequency, intensity, and duration of extreme events, such as marine heatwaves (MHWs). Within eastern boundary current systems, MHWs have profound impacts on temperature-nutrient dynamics that drive primary productivity. Bull kelp ( Nereocystis luetkeana ) forests, a vital nearshore habitat, experienced unprecedented losses along 350 km of coastline in northern California beginning in 2014 and continuing through 2019. These losses have had devastating consequences to northern California communities, economies, and fisheries. Using a suite of in situ and satellite-derived data, we demonstrate that the abrupt ecosystem shift initiated by a multi-year MHW was preceded by declines in keystone predator population densities. We show strong evidence that northern California kelp forests, while temporally dynamic, were historically resilient to fluctuating environmental conditions, even in the absence of key top predators, but that a series of coupled environmental and biological shifts between 2014 and 2016 resulted in the formation of a persistent, altered ecosystem state with low primary productivity. Based on our findings, we recommend the implementation of ecosystem-based and adaptive management strategies, such as (1) monitoring the status of key ecosystem attributes: kelp distribution and abundance, and densities of sea urchins and their predators, (2) developing management responses to threshold levels of these attributes, and (3) creating quantitative restoration suitability indices for informing kelp restoration efforts. 
    more » « less