Low-fidelity engineering wake models are often combined with linear superposition laws to predict wake velocities across wind farms under steady atmospheric conditions. While convenient for wind farm planning and long-term performance evaluation, such models are unable to capture the time-varying nature of the waked velocity field, as they are agnostic to the complex aerodynamic interactions among wind turbines and the effects of atmospheric boundary layer turbulence. To account for such effects while remaining amenable to conventional system-theoretic tools for flow estimation and control, we propose a new class of data-enhanced physics-based models for the dynamics of wind farm flow fluctuations. Our approach relies on the predictive capability of the stochastically forced linearized Navier–Stokes equations around static base flow profiles provided by conventional engineering wake models. We identify the stochastic forcing into the linearized dynamics via convex optimization to ensure statistical consistency with higher-fidelity models or experimental measurements while preserving model parsimony. We demonstrate the utility of our approach in completing the statistical signature of wake turbulence in accordance with large-eddy simulations of turbulent flow over a cascade of yawed wind turbines. Our numerical experiments provide insight into the significance of spatially distributed field measurements in recovering the statistical signature of wind farm turbulence and training stochastic linear models for short-term wind forecasting.
more »
« less
Three-dimensional stochastic dynamical modeling for wind farm flow estimation
Abstract Modifying turbine blade pitch, generator torque, and nacelle direction (yaw) are conventional approaches for enhancing energy output and alleviating structural loads. However, the efficacy of such methods is challenged by the lag in adjusting such settings after atmospheric variations are detected. Without reliable short-term wind forecasting tools, current practice, which mostly relies on data collected at or just behind turbines, can result in sub-optimal performance. Data-assimilation strategies can achieve real-time wind forecasting capabilities by correcting model-based predictions of the incoming wind using various field measurements. In this paper, we revisit the development of a class of prior models for real-time estimation via Kalman filtering algorithms that track atmospheric variations using ground-level pressure sensors. This class of models is given by the stochastically forced linearized Navier-Stokes equations around the three-dimensional waked velocity profile defined by a curled wake model. The stochastic input to these models is devised using convex optimization to achieve statistical consistency with high-fidelity large-eddy simulations. We demonstrate the ability of such models in reproducing the second-order statistical signatures of the turbulent velocity field. In support of assimilating ground-level pressure measurements with the predictions of said models, we also highlight the significance of the wall-normal dimension in enhancing two-point correlations of the pressure field between the ground and the computational domain.
more »
« less
- Award ID(s):
- 1916776
- PAR ID:
- 10562717
- Publisher / Repository:
- IOPSCIENCE
- Date Published:
- Journal Name:
- Journal of Physics: Conference Series
- Volume:
- 2767
- Issue:
- 5
- ISSN:
- 1742-6588
- Page Range / eLocation ID:
- 052065
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The power performance and the wind velocity field of an onshore wind farm are predicted with machine learning models and the pseudo‐2D RANS model, then assessed against SCADA data. The wind farm under investigation is one of the sites involved with the American WAKE experimeNt (AWAKEN). The performed simulations enable predictions of the power capture at the farm and turbine levels while providing insights into the effects on power capture associated with wake interactions that operating upstream turbines induce, as well as the variability caused by atmospheric stability. The machine learning models show improved accuracy compared to the pseudo‐2D RANS model in the predictions of turbine power capture and farm power capture with roughly half the normalized error. The machine learning models also entail lower computational costs upon training. Further, the machine learning models provide predictions of the wind turbulence intensity at the turbine level for different wind and atmospheric conditions with very good accuracy, which is difficult to achieve through RANS modeling. Additionally, farm‐to‐farm interactions are noted, with adverse impacts on power predictions from both models.more » « less
-
Abstract Flow modifications induced by wind turbine rotors on the incoming atmospheric boundary layer (ABL), such as blockage and speedups, can be important factors affecting the power performance and annual energy production (AEP) of a wind farm. Further, these rotor‐induced effects on the incoming ABL can vary significantly with the characteristics of the incoming wind, such as wind shear, veer, and turbulence intensity, and turbine operative conditions. To better characterize the complex flow physics underpinning the interaction between turbine rotors and the ABL, a field campaign was performed by deploying profiling wind LiDARs both before and after the construction of an onshore wind turbine array. Considering that the magnitude of these rotor‐induced flow modifications represents a small percentage of the incoming wind speed ( ), high accuracy needs to be achieved for the analysis of the experimental data and generation of flow predictions. Further, flow distortions induced by the site topography and effects of the local climatology need to be quantified and differentiated from those induced by wind turbine rotors. To this aim, a suite of statistical and machine learning models, such as k‐means cluster analysis coupled with random forest predictions, are used to quantify and predict flow modifications for different wind and atmospheric conditions. The experimental results show that wind velocity reductions of up to 3% can be observed at an upstream distance of 1.5 rotor diameter from the leading wind turbine rotor, with more significant effects occurring for larger positive wind shear. For more complex wind conditions, such as negative shear and low‐level jet, the rotor induction becomes highly complex entailing either velocity reductions (down to 9%) below hub height and velocity increases (up to 3%) above hub height. The effects of the rotor induction on the incoming wind velocity field seem to be already roughly negligible at an upstream distance of three rotor diameters. The results from this field experiment will inform models to simulate wind‐turbine and wind‐farm operations with improved accuracy for flow predictions in the proximity of the rotor area, which will be instrumental for more accurate quantification of wind farm blockage and relative effects on AEP.more » « less
-
Next-generation models of wind farm flows are increasingly needed to assist the design, operation, and performance diagnostic of modern wind power plants. Accuracy in the descriptions of the wind farm aerodynamics, including the effects of atmospheric stability, coalescing wakes, and the pressure field induced by the turbine rotors are necessary attributes for such tools as well as low computational costs. The Pseudo-2D RANS model is formulated to provide an efficient solution of the Navier–Stokes equations governing wind-farm flows installed in flat terrain and offshore. The turbulence closure and actuator disk model are calibrated based on wind light detection and ranging measurements of wind turbine wakes collected under different operative and atmospheric conditions. A shallow-water formulation is implemented to achieve a converged solution for the velocity and pressure fields across a farm with computational costs comparable to those of mid-fidelity engineering wake models. The theoretical foundations and numerical scheme of the Pseudo-2D RANS model are provided, together with a detailed description of the verification and validation processes. The model is assessed against a large dataset of power production for an onshore wind farm located in North Texas showing a normalized mean absolute error of 5.6% on the 10-min-averaged active power and 3% on the clustered wind farm efficiency, which represent 8% and 24%, respectively, improvements with respect to the best-performing engineering wake model tested in this work.more » « less
-
Modeling the effect of wind speed and direction shear on utility‐scale wind turbine power productionWind speed and direction variations across the rotor affect power production. As utility‐scale turbines extend higher into the atmospheric boundary layer (ABL) with larger rotor diameters and hub heights, they increasingly encounter more complex wind speed and direction variations. We assess three models for power production that account for wind speed and direction shear. Two are based on actuator disc representations, and the third is a blade element representation. We also evaluate the predictions from a standard power curve model that has no knowledge of wind shear. The predictions from each model, driven by wind profile measurements from a profiling LiDAR, are compared to concurrent power measurements from an adjacent utility‐scale wind turbine. In the field measurements of the utility‐scale turbine, discrete combinations of speed and direction shear induce changes in power production of −19% to +34% relative to the turbine power curve for a given hub height wind speed. Positive speed shear generally corresponds to over‐performance and increasing magnitudes of direction shear to greater under‐performance, relative to the power curve. Overall, the blade element model produces both higher correlation and lower error relative to the other models, but its quantitative accuracy depends on induction and controller sub‐models. To further assess the influence of complex, non‐monotonic wind profiles, we also drive the models with best‐fit power law wind speed profiles and linear wind direction profiles. These idealized inputs produce qualitative and quantitative differences in power predictions from each model, demonstrating that time‐varying, non‐monotonic wind shear affects wind power production.more » « less
An official website of the United States government

