skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 3, 2025

Title: Yatakemycin biosynthesis requires two deoxyribonucleases for toxin self-resistance
The natural product yatakemycin (YTM) is a potent antimicrobial DNA damaging agent. YtkR4 and YtkR5 are deoxyribonucleases that provide resistance to YTM toxicity by removing the a basic site produced by YtkR2 cleavage of a YTM-adenosine lesion.  more » « less
Award ID(s):
1928918 2341288
PAR ID:
10563312
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Royal Society of Chemistry (United Kingdom)
Date Published:
Journal Name:
RSC Chemical Biology
ISSN:
2633-0679
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Probabilistic (p-) computing is a physics-based approach to addressing computational problems which are difficult to solve by conventional von Neumann computers. A key requirement for p-computing is the realization of fast, compact, and energy-efficient probabilistic bits. Stochastic magnetic tunnel junctions (MTJs) with low energy barriers, where the relative dwell time in each state is controlled by current, have been proposed as a candidate to implement p-bits. This approach presents challenges due to the need for precise control of a small energy barrier across large numbers of MTJs, and due to the need for an analog control signal. Here we demonstrate an alternative p-bit design based on perpendicular MTJs that uses the voltage-controlled magnetic anisotropy (VCMA) effect to create the random state of a p-bit on demand. The MTJs are stable (i.e. have large energy barriers) in the absence of voltage, and VCMA-induced dynamics are used to generate random numbers in less than 10 ns/bit. We then show a compact method of implementing p-bits by using VC-MTJs without a bias current. As a demonstration of the feasibility of the proposed p-bits and high quality of the generated random numbers, we solve up to 40 bit integer factorization problems using experimental bit-streams generated by VC-MTJs. Our proposal can impact the development of p-computers, both by supporting a fully spintronic implementation of a p-bit, and alternatively, by enabling true random number generation at low cost for ultralow-power and compact p-computers implemented in complementary metal-oxide semiconductor chips. 
    more » « less
  2. Let be a dominant rational self-map of a smooth projective variety defined over $$\overline{\mathbb{Q}}$$ . For each point $$P\in X(\overline{\mathbb{Q}})$$ whose forward $$f$$ -orbit is well defined, Silverman introduced the arithmetic degree $$\unicode[STIX]{x1D6FC}_{f}(P)$$ , which measures the growth rate of the heights of the points $$f^{n}(P)$$ . Kawaguchi and Silverman conjectured that $$\unicode[STIX]{x1D6FC}_{f}(P)$$ is well defined and that, as $$P$$ varies, the set of values obtained by $$\unicode[STIX]{x1D6FC}_{f}(P)$$ is finite. Based on constructions by Bedford and Kim and by McMullen, we give a counterexample to this conjecture when $$X=\mathbb{P}^{4}$$ . 
    more » « less
  3. Abstract Linear polyphosphonates with the generic formula –[P(Ph)(X)OR′O]n– (X = S or Se) have been synthesized by polycondensations of P(Ph)(NEt2)2and a diol (HOR′OH = 1,4‐cyclohexanedimethanol, 1,4‐benzenedimethanol, tetraethylene glycol, or 1,12‐dodecanediol) followed by reaction with a chalcogen. Random copolymers have been synthesized by polycondensations of P(Ph)(NEt2)2and mixture of two of the diols in a 2:1:1 mol ratio followed by reaction with a chalcogen. Block copolymers with the generic formula –[P(Ph)(X)OR′O](x + 2)–[P(Ph)(X)OR′O](x + 3)– (X = S or Se) have been synthesized by the polycondensations of Et2N[P(Ph)(X)OR′O](x + 2)P(Ph)NEt2oligomers with HOR′O[P(Ph)(X)OR′O](x + 3)H oligomers followed by reaction with a chalcogen. The Et2N[P(Ph)(X)OR′O](x + 2)P(Ph)NEt2oligomers are prepared by the reaction of an excess of P(Ph)(NEt2)2with a diol while the HOR′O[P(Ph)(X)OR′O](x + 3)H oligomers are prepared by the reaction of P(Ph)(NEt2)2with an excess of the diol. In each case the excess, x is the same and determines the average block sizes. All of the polymers were characterized using1H,13C{1H}, and31P{1H} NMR spectroscopy, TGA, DSC, and SEC.31P{1H} NMR spectroscopy demonstrates that the random and block copolymers have the expected arrangements of monomers and, in the case of block copolymers, verifies the block sizes. All polymers are thermally stable up to ~300°C, and the arrangements of monomers in the copolymers (block vs. random) affect their degradation temperatures andTgprofiles. The polymers have weight average MWs of up to 3.8 × 104 Da. 
    more » « less
  4. Abstract Given a family of abelian covers of $${\mathbb{P}}^{1}$$ and a prime $$p$$ of good reduction, by considering the associated Deligne–Mostow Shimura variety, we obtain non-trivial bounds for the Ekedahl–Oort types, and the Newton polygons, at prime $$p$$ for the curves in the family. In this paper, we investigate whether such bounds are sharp. In particular, we prove sharpness when the number of branching points is at most five and $$p$$ sufficiently large. Our result is a generalization under stricter assumptions of [ 2, Theorem 6.1] by Bouw, which proves the analogous statement for the $$p$$-rank, and it relies on the notion of Hasse–Witt triple introduced by Moonen in [ 12]. 
    more » « less
  5. Abstract The use of boron Lewis acids as instigators of bond cleavage offers a number of synthetic possibilities. A unique feature of this class of reagents is the ability to functionalize otherwise inert C–F bonds. We summarize notable developments in C–F bond halogen exchange using Lewis acidic boron reagents and we conclude by featuring our group’s advances in activating CF3 groups by using boron trihalides. 1 Introduction 2 Boron-Mediated Halogen Exchange 3 Mono-Selective C–F Activation 4 Conclusions 
    more » « less