Decentralized planning for multi-agent systems, such as fleets of robots in a search-and-rescue operation, is often constrained by limitations on how agents can communicate with each other. One such limitation is the case when agents can communicate with each other only when they are in line-of-sight (LOS). Developing decentralized planning methods that guarantee safety is difficult in this case, as agents that are occluded from each other might not be able to communicate until it’s too late to avoid a safety violation. In this paper, we develop a decentralized planning method that explicitly avoids situations where lack of visibility of other agents would lead to an unsafe situation. Building on top of an existing Rapidly exploring Random Tree (RRT)-based approach, our method guarantees safety at each iteration. Simulation studies show the effectiveness of our method and compare the degradation in performance with respect to a clairvoyant decentralized planning algorithm where agents can communicate despite not being in LOS of each other.
more »
« less
Reconfiguration of a 2D Structure Using Spatio-Temporal Planning and Load Transferring
We present progress on the problem of reconfiguring a 2D arrangement of building material by a cooperative group of robots. These robots must avoid collisions, deadlocks, and are subjected to the constraint of maintaining connectivity of the structure. We develop two reconfiguration methods, one based on spatio-temporal planning, and one based on target swapping, to increase building efficiency. The first method can significantly reduce planning times compared to other multi-robot planners. The second method helps to reduce the amount of time robots spend waiting for paths to be cleared, and the overall distance traveled by the robots.
more »
« less
- PAR ID:
- 10565256
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3503-8457-4
- Page Range / eLocation ID:
- 8735 to 8741
- Format(s):
- Medium: X
- Location:
- Yokohama, Japan
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Worldwide, manufacturers are reimagining the future of their workforce and its connection to technology. Rather than replacing humans, Industry 5.0 explores how humans and robots can best complement one another's unique strengths. However, realizing this vision requires an in-depth understanding of how workers view the positive and negative attributes of their jobs, and the place of robots within it. In this paper, we explore the relationship between work attributes and automation goals by engaging in field research at a manufacturing plant. We conducted 50 face-to-face interviews with assembly-line workers (n=50), which we analyzed using discourse analysis and social constructivist methods. We found that the work attributes deemed most positive by participants include social interaction, movement and exercise, (human) autonomy, problem solving, task variety, and building with their hands. The main negative work attributes included health and safety issues, feeling rushed, and repetitive work. We identified several ways robots could help reduce negative work attributes and enhance positive ones, such as reducing work interruptions and cultivating physical and psychological well-being. Based on our findings, we created a set of integration considerations for organizations planning to deploy robotics technology, and discuss how the manufacturing and HRI communities can explore these ideas in the future.more » « less
-
Autonomous navigation in construction environments is particularly challenging due to dynamic obstacles and uncertain surroundings. While recent advances in Building Information Modeling (BIM)-based planning have leveraged spatial and semantic information to improve navigation, most prior work assumes precise localization of the BIM model to enable global path planning. In contrast, this paper introduces an online replanning framework that registers obstacles on discovery within BIM and replans according to the updated semantic map. Our method integrates object-aware path planning by utilizing large language models (LLMs) to extract semantic danger sentiments from BIM-annotated objects and their spatial information about the mission environment. Additionally, we demonstrate practical feasibility by integrating a path tracking control, ensuring generated paths are not only safer but also realistically executable by mobile robots. Experimental results demonstrate an improved obstacle avoidance by 2.8× compared to traditional A* algorithms in dynamically updated environments.more » « less
-
We present a dynamic multi-robot mapping framework that combines Blockchain technology for swarm management with a Hybrid Ant Colony Optimization (HACO) algorithm for path planning. Blockchain-based swarm contracts enable decentralized, transparent, and secure task allocation, acceptance, tracking, and reward distribution among multiple robots. HACO facilitates efficient path planning in complex environments through cooperative and competitive strategies. We deploy multiple LiDAR-equipped Unitree Go2 dog robots to collaboratively and competitively map divided sub-areas, with task reassignment based on real-time feedback and the selected strategy. In cooperative mode, robots share data to boost efficiency and accuracy; in competitive mode, they work independently to reduce redundancy and optimize resources. Swarm contracts also verify full sub-area coverage via the merged map. Results show that integrating blockchain-based management with HACO significantly enhances mapping performance, delivering a robust and scalable solution for realworld multi-robot systems.more » « less
-
null (Ed.)We consider the problem of enhanced security of multi-robot systems to prevent cyber-attackers from taking control of one or more robots in the group. We build upon a recently proposed solution that utilizes the physical measurement capabilities of the robots to perform introspection, i.e., detect the malicious actions of compromised agents using other members of the group. In particular, the proposed solution finds multi-agent paths on discrete spaces combined with a set of mutual observations at specific locations to detect robots with significant deviations from the preordained routes. In this paper, we develop a planner that works on continuous configuration spaces while also taking into account similar spatio-temporal constraints. In addition, the planner allows for more general tasks that can be formulated as arbitrary smooth cost functions to be specified. The combination of constraints and objectives considered in this paper are not easily handled by popular path planning algorithms (e.g., sampling-based methods), thus we propose a method based on the Alternating Direction Method of Multipliers (ADMM). ADMM is capable of finding locally optimal solutions to problems involving different kinds of objectives and non-convex temporal and spatial constraints, and allows for infeasible initialization. We benchmark our proposed method on multi-agent map exploration with minimum-uncertainty cost function, obstacles, and observation schedule constraints.more » « less
An official website of the United States government

