skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: PbSe Quantum Dot Superlattice Thin Films for Thermoelectric Applications
Abstract An unusual self‐assembly pattern is observed for highly ordered 1500‐nm‐thick films of monodisperse 13‐nm‐sized colloidal PbSe quantum dots, originating from their faceted truncated cube‐like shape. Specifically, self‐assembled PbSe dots exhibited attachment to the substrate by <001> planes followed by an interconnection through the {001} facets in plan‐view and {110}/{111} facets in cross‐sectional‐view, thus forming a cubic superlattice. The thermoelectric properties of the PbSe superlattice thin films are investigated by means of frequency domain thermoreflectance, scanning thermal probe microscopy, and four‐probe measurements, and augmented by computational efforts. Thermal conductivity of the superlattice films is measured as low as 0.7 W m−1 K−1at room temperature due to the developed nanostructure. The low values of electrical conductivity are attributed to the presence of insulating oleate capping ligands at the dots’ surface and the small contact area between the PbSe dots within the superlattice. Experimental efforts aiming at the removal of the oleate ligands are conducted by annealing or molten‐salt treatment, and in the latter case, yielded a promising improvement by two orders of magnitude in thermoelectric performance. The result indicates that the straightforward molten‐salt treatment is an interesting approach to derive thermoelectric dot superlattice thin films over a centimeter‐sized area.  more » « less
Award ID(s):
2333388
PAR ID:
10567062
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Willey
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
34
Issue:
49
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report on photoluminescence in the 3–7 µm mid-wave infrared (MWIR) range from sub-100 nm strained thin films of rocksalt PbSe(001) grown on GaAs(001) substrates by molecular beam epitaxy. These bare films, grown epitaxially at temperatures below 400 °C, luminesce brightly at room temperature and have minority carrier lifetimes as long as 172 ns. The relatively long lifetimes in PbSe thin films are achievable despite threading dislocation densities exceeding 109 cm−2 arising from island growth on the nearly 8% lattice- and crystal-structure-mismatched GaAs substrate. Using quasi-continuous-wave and time-resolved photoluminescence, we show that the Shockley–Read–Hall recombination is slow in our high dislocation density PbSe films at room temperature, a hallmark of defect tolerance. Power-dependent photoluminescence and high injection excess carrier lifetimes at room temperature suggest that degenerate Auger recombination limits the efficiency of our films, although the Auger recombination rates are significantly lower than equivalent III–V bulk materials and even a bit slower than expectations for bulk PbSe. Consequently, the combined effects of defect tolerance and low Auger recombination rates yield an estimated peak internal quantum efficiency of roughly 30% at room temperature, unparalleled in the MWIR for a severely lattice-mismatched thin film. We anticipate substantial opportunities for improving performance by optimizing crystal growth as well as understanding Auger processes in thin films. These results highlight the unique opportunity to harness the unusual chemical bonding in PbSe and related IV–VI semiconductors for heterogeneously integrated mid-infrared light sources constrained by tight thermal budgets in new device designs. 
    more » « less
  2. We create precursors for PbTe, PbSe, SnTe, and SnSe by reacting Pb or Sn with diphenyl dichalcogenides in a variety of different solvents. We then deposit PbSe x Te 1−x thin films using these precursors and measure their thermoelectric properties. Introducing Na-dopants into the films allows the thermoelectric properties to be varied. 
    more » « less
  3. We investigate the beneficial effects of rapid thermal annealing on structure and photoluminescence of PbSe thin films on GaAs (001) grown below 150 °C, with a goal of low temperature integration for infrared optoelectronics. Thin films of PbSe deposited on GaAs by molecular beam epitaxy are epitaxial at these reduced growth temperatures, yet the films are highly defective with a mosaic grain structure with low angle and dendritic boundaries following coalescence. Remarkably, we find that rapid thermal annealing for as short as 180 s at temperatures between 300 and 425 °C in nitrogen ambient leads to extensive re-crystallization and transformation of these grain boundaries. The annealing at the same time dramatically improves the band edge luminescence at 3.7 μm from previously undetectable levels to nearly half as intense as our best conventionally grown PbSe films at 300 °C. We show using an analysis of laser pump-power dependent photoluminescence measurements that this dramatic improvement in the photoluminescence intensity is due to a reduction in the trap-assisted recombination. However, we find it much less correlated with improved structural parameters determined by x-ray diffraction rocking curves, thereby pointing to the importance of eliminating point defects over extended defects. Overall, the success of rapid thermal annealing in improving the luminescent properties of low growth temperature PbSe is a step toward the integration of PbSe infrared optoelectronics in low thermal budget, back end of line compatible fabrication processes. 
    more » « less
  4. null (Ed.)
    In the past decade, great efforts have been devoted to the development of organic–inorganic hybrid perovskites for achieving efficient photovoltaics, but less attention has been paid to their thermoelectric applications. In this study, for the first time, we report the thermoelectric performance of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) doped NH 2 CHNH 2 SnI 3 (FASnI 3 ) thin films. It is found that the electrical conductivities of the F4-TCNQ doped FASnI 3 thin films increase and then decrease along with increased doping levels of F4-TCNQ. Systematic studies indicate that enhanced electrical conductivities are attributed to the increased charge carrier concentrations and mobilities and superior film morphologies of the F4-TCNQ doped FASnI 3 thin films, and decreased electrical conductivities originate from the cracks and poor film morphology of the F4-TCNQ doped FASnI 3 thin films induced by excess F4-TCNQ dopants. The quantitative thermal conductivity scanning thermal microscopy studies reveal that the F4-TCNQ doped FASnI 3 thin films exhibit ultralow thermal conductivities. Moreover, the thermoelectric performance of the F4-TCNQ doped FASnI 3 thin films is investigated. It is found that the F4-TCNQ doped FASnI 3 thin films exhibit a Seebeck coefficient of ∼310 μV K −1 , a power factor of ∼130 μW m −1 K −2 and a ZT value of ∼0.19 at room temperature. All these results demonstrate that our studies open a door for exploring cost-effective less-toxic organic–inorganic hybrid perovskites in heat-to-electricity conversion applications at room temperature. 
    more » « less
  5. Controlling nanoporosity to favorably alter multiple properties in layered crystalline inorganic thin films is a challenge. Here, we demonstrate that the thermoelectric and mechanical properties of Ca 3 Co 4 O 9 films can be engineered through nanoporosity control by annealing multiple Ca(OH) 2 /Co 3 O 4 reactant bilayers with characteristic bilayer thicknesses (b t ). Our results show that doubling b t , e.g. , from 12 to 26 nm, more than triples the average pore size from ∼120 nm to ∼400 nm and increases the pore fraction from 3% to 17.1%. The higher porosity film exhibits not only a 50% higher electrical conductivity of σ ∼ 90 S cm −1 and a high Seebeck coefficient of α ∼ 135 μV K −1 , but also a thermal conductivity as low as κ ∼ 0.87 W m −1 K −1 . The nanoporous Ca 3 Co 4 O 9 films exhibit greater mechanical compliance and resilience to bending than the bulk. These results indicate that annealing reactant multilayers with controlled thicknesses is an attractive way to engineer nanoporosity and realize mechanically flexible oxide-based thermoelectric materials. 
    more » « less