We study the problem of fairly allocating a set of indivisible goods among n agents with additive valuations. Envy freeness up to any good (EFX) is arguably the most compelling fairness notion in this context. However, the existence of an EFX allocation has not been settled and is one of the most important problems in fair division. Toward resolving this question, many impressive results show the existence of its relaxations. In particular, it is known that 0.618-EFX allocations exist and that EFX allocation exists if we do not allocate at most (n-1) goods. Reducing the number of unallocated goods has emerged as a systematic way to tackle the main question. For example, follow-up works on three- and four-agents cases, respectively, allocated two more unallocated goods through an involved procedure. In this paper, we study the general case and achieve sublinear numbers of unallocated goods. Through a new approach, we show that for every [Formula: see text], there always exists a [Formula: see text]-EFX allocation with sublinear number of unallocated goods and high Nash welfare. For this, we reduce the EFX problem to a novel problem in extremal graph theory. We define the notion of rainbow cycle number [Formula: see text] in directed graphs. For all [Formula: see text] is the largest k such that there exists a k-partite graph [Formula: see text], in which each part has at most d vertices (i.e., [Formula: see text] for all [Formula: see text]); for any two parts Viand Vj, each vertex in Vihas an incoming edge from some vertex in Vjand vice versa; and there exists no cycle in G that contains at most one vertex from each part. We show that any upper bound on [Formula: see text] directly translates to a sublinear bound on the number of unallocated goods. We establish a polynomial upper bound on [Formula: see text], yielding our main result. Furthermore, our approach is constructive, which also gives a polynomial-time algorithm for finding such an allocation. Funding: J. Garg was supported by the Directorate for Computer and Information Science and Engineering [Grant CCF-1942321]. R. Mehta was supported by the Directorate for Computer and Information Science and Engineering [Grant CCF-1750436].
more »
« less
This content will become publicly available on March 1, 2026
EFX: A Simpler Approach and an (Almost) Optimal Guarantee via Rainbow Cycle Number
A Simpler Approach to the EFX Problem Envy-freeness up to any item (EFX) has emerged as a compelling fairness notion in discrete fair division. However, its existence remains one of the biggest open problems in the field. In a breakthrough, Chaudhury et al. (2020) establish the existence of EFX allocations for three agents with additive valuations through intricate case analysis. The paper “EFX: A Simpler Approach and an (Almost) Optimal Guarantee via Rainbow Cycle Number” by Akrami, Alon, Chaudhury, Garg, Mehlhorn, and Mehta offers a simpler approach for improving the EFX guarantee. They demonstrate the existence of EFX allocations for three agents when at least one has additive valuations (whereas the other two have general monotone valuations). Additionally, they nearly resolve a conjecture regarding the rainbow cycle number, leading to an (almost) tight bound for the existence of approximate EFX allocations with few unallocated items achievable through this approach.
more »
« less
- Award ID(s):
- 1942321
- PAR ID:
- 10592416
- Publisher / Repository:
- INFORMS
- Date Published:
- Journal Name:
- Operations Research
- Volume:
- 73
- Issue:
- 2
- ISSN:
- 0030-364X
- Page Range / eLocation ID:
- 738 to 751
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study the problem of distributing a set of indivisible goods among agents with additive valuations in afairmanner. The fairness notion under consideration is envy-freeness up toanygood (EFX). Despite significant efforts by many researchers for several years, the existence of EFX allocations has not been settled beyond the simple case of two agents. In this article, we show constructively that an EFX allocation always exists for three agents. Furthermore, we falsify the conjecture of Caragiannis et al. by showing an instance with three agents for which there is a partial EFX allocation (some goods are not allocated) with higher Nash welfare than that of any complete EFX allocation.more » « less
-
We study fair allocation of indivisible goods and chores among agents with lexicographic preferences---a subclass of additive valuations. In sharp contrast to the goods-only setting, we show that an allocation satisfying envy-freeness up to any item (EFX) could fail to exist for a mixture of objective goods and chores. To our knowledge, this negative result provides the first counterexample for EFX over (any subdomain of) additive valuations. To complement this non-existence result, we identify a class of instances with (possibly subjective) mixed items where an EFX and Pareto optimal allocation always exists and can be efficiently computed. When the fairness requirement is relaxed to maximin share (MMS), we show positive existence and computation for any mixed instance. More broadly, our work examines the existence and computation of fair and efficient allocations both for mixed items as well as chores-only instances, and highlights the additional difficulty of these problems vis-à-vis their goods-only counterparts.more » « less
-
For the fundamental problem of fairly dividing a set of indivisible items among agents, envy-freeness up to any item (EFX) and maximin fairness (MMS) are arguably the most compelling fairness concepts proposed till now. Unfortunately, despite significant efforts over the past few years, whether EFX allocations always exist is still an enigmatic open problem, let alone their efficient computation. Furthermore, today we know that MMS allocations are not always guaranteed to exist. These facts weaken the usefulness of both EFX and MMS, albeit their appealing conceptual characteristics.We propose two alternative fairness concepts—called epistemic EFX (EEFX) and minimum EFX value fairness (MXS)---inspired by EFX and MMS. For both, we explore their relationships to well-studied fairness notions and, more importantly, prove that EEFX and MXS allocations always exist and can be computed efficiently for additive valuations. Our results justify that the new fairness concepts are excellent alternatives to EFX and MMS.more » « less
-
We consider the problem of fairly allocating a set of indivisible goods among n agents with additive valuations, using the popular fairness notion of maximin share (MMS). Since MMS allocations do not always exist, a series of works provided existence and algorithms for approximate MMS allocations. The Garg-Taki algorithm gives the current best approximation factor of (3/4 + 1/12n). Most of these results are based on complicated analyses, especially those providing better than 2/3 factor. Moreover, since no tight example is known of the Garg-Taki algorithm, it is unclear if this is the best factor of this approach. In this paper, we significantly simplify the analysis of this algorithm and also improve the existence guarantee to a factor of (3/4 + min(1/36, 3/(16n-4))). For small n, this provides a noticeable improvement. Furthermore, we present a tight example of this algorithm, showing that this may be the best factor one can hope for with the current techniques.more » « less
An official website of the United States government
