skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Getting More by Knowing Less: Bayesian Incentive Compatible Mechanisms for Fair Division
We study fair resource allocation with strategic agents. It is well-known that, across multiple fundamental problems in this domain, truthfulness and fairness are incompatible. For example, when allocating indivisible goods, no truthful and deterministic mechanism can guarantee envy-freeness up to one item (EF1), even for two agents with additive valuations. Or, in cake-cutting, no truthful and deterministic mechanism always outputs a proportional allocation, even for two agents with piecewise constant valuations. Our work stems from the observation that, in the context of fair division, truthfulness is used as a synonym for Dominant Strategy Incentive Compatibility (DSIC), requiring that an agent prefers reporting the truth, no matter what other agents report.In this paper, we instead focus on Bayesian Incentive Compatible (BIC) mechanisms, requiring that agents are better off reporting the truth in expectation over other agents' reports. We prove that, when agents know a bit less about each other, a lot more is possible: using BIC mechanisms we can achieve fairness notions that are unattainable by DSIC mechanisms in both the fundamental problems of allocation of indivisible goods and cake-cutting. We prove that this is the case even for an arbitrary number of agents, as long as the agents' priors about each others' types satisfy a neutrality condition. Notably, for the case of indivisible goods, we significantly strengthen the state-of-the-art negative result for efficient DSIC mechanisms, while also highlighting the limitations of BIC mechanisms, by showing that a very general class of welfare objectives is incompatible with Bayesian Incentive Compatibility. Combined, these results give a near-complete picture of the power and limitations of BIC and DSIC mechanisms for the problem of allocating indivisible goods.  more » « less
Award ID(s):
2047907 2144208
PAR ID:
10572536
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
International Joint Conferences on Artificial Intelligence Organization
Date Published:
ISBN:
978-1-956792-04-1
Page Range / eLocation ID:
2807 to 2815
Format(s):
Medium: X
Location:
Jeju, South Korea
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the problem of distributing a set of indivisible goods among agents with additive valuations in afairmanner. The fairness notion under consideration is envy-freeness up toanygood (EFX). Despite significant efforts by many researchers for several years, the existence of EFX allocations has not been settled beyond the simple case of two agents. In this article, we show constructively that an EFX allocation always exists for three agents. Furthermore, we falsify the conjecture of Caragiannis et al. by showing an instance with three agents for which there is a partial EFX allocation (some goods are not allocated) with higher Nash welfare than that of any complete EFX allocation. 
    more » « less
  2. We study fair allocation of indivisible goods and chores among agents with lexicographic preferences---a subclass of additive valuations. In sharp contrast to the goods-only setting, we show that an allocation satisfying envy-freeness up to any item (EFX) could fail to exist for a mixture of objective goods and chores. To our knowledge, this negative result provides the first counterexample for EFX over (any subdomain of) additive valuations. To complement this non-existence result, we identify a class of instances with (possibly subjective) mixed items where an EFX and Pareto optimal allocation always exists and can be efficiently computed. When the fairness requirement is relaxed to maximin share (MMS), we show positive existence and computation for any mixed instance. More broadly, our work examines the existence and computation of fair and efficient allocations both for mixed items as well as chores-only instances, and highlights the additional difficulty of these problems vis-à-vis their goods-only counterparts. 
    more » « less
  3. We investigate the fair allocation of indivisible goods to agents with possibly different entitlements represented by weights. Previous work has shown that guarantees for additive valuations with existing envy-based notions cannot be extended to the case where agents have matroid-rank (i.e., binary submodular) valuations. We propose two families of envy-based notions for matroid-rank and general submodular valuations, one based on the idea of transferability and the other on marginal values. We show that our notions can be satisfied via generalizations of rules such as picking sequences and maximum weighted Nash welfare. In addition, we introduce welfare measures based on harmonic numbers, and show that variants of maximum weighted harmonic welfare offer stronger fairness guarantees than maximum weighted Nash welfare under matroid-rank valuations. 
    more » « less
  4. We consider the problem of fairly allocating a set of indivisible goods among n agents. Various fairness notions have been proposed within the rapidly growing field of fair division, but the Nash social welfare (NSW) serves as a focal point. In part, this follows from the 'unreasonable' fairness guarantees provided, in the sense that a max NSW allocation meets multiple other fairness metrics simultaneously, all while satisfying a standard economic concept of efficiency, Pareto optimality. However, existing approximation algorithms fail to satisfy all of the remarkable fairness guarantees offered by a max NSW allocation, instead targeting only the specific NSW objective. We address this issue by presenting a 2 max NSW, Prop-1, 1/(2n) MMS, and Pareto optimal allocation in strongly polynomial time. Our techniques are based on a market interpretation of a fractional max NSW allocation. We present novel definitions of fairness concepts in terms of market prices, and design a new scheme to round a market equilibrium into an integral allocation that provides most of the fairness properties of an integral max NSW allocation.  
    more » « less
  5. We consider the problem of fairly allocating a set of indivisible goods among n agents. Various fairness notions have been proposed within the rapidly growing field of fair division, but the Nash social welfare (NSW) serves as a focal point. In part, this follows from the ‘unreasonable’ fairness guarantees provided, in the sense that a max NSW allocation meets multiple other fairness metrics simultaneously, all while satisfying a standard economic concept of efficiency, Pareto optimality. However, existing approximation algorithms fail to satisfy all of the remarkable fairness guarantees offered by a max NSW allocation, instead targeting only the specific NSW objective. We address this issue by presenting a 2 max NSW, Prop-1, 1/(2n) MMS, and Pareto optimal allocation in strongly polynomial time. Our techniques are based on a market interpretation of a fractional max NSW allocation. We present novel definitions of fairness concepts in terms of market prices, and design a new scheme to round a market equilibrium into an integral allocation in a way that provides most of the fairness properties of an integral max NSW allocation. 
    more » « less