Applying coatings that suppress the radiance changes related to temperature-dependent blackbody emission enables temperature-independent optical and sensing systems. Phase-change materials can significantly modify their optical properties within their transition window, but compensating for the large mid-wave infrared (MWIR, 3–5 µm) variation is demanding: blackbody radiance at 3 µm increases nearly 10-fold as the temperature rises from 30 °C to 80 °C. Vanadium dioxide VO2, whose insulator–metal transition offers a sharp contrast and a low-loss insulating state, is attractive for applications in thermal management, but simple thin-film designs cannot provide full compensation. We demonstrate metasurface coatings that provide this compensation by constructing an array of metal–VO2–metal antennas tuned to maintain constant thermal emission at a target wavelength over a temperature range of 30 °C to 80 °C. Antennas of several lateral sizes are combined, so their individual resonances collectively track the Planck change. This design provides both optical contrast and the correct temperature derivative, which are unattainable with homogeneous layers. Our approach results in a negligible apparent temperature change of the metasurface across the 30–80 °C range, effectively masking thermal signatures from MWIR detectors stemming from the low losses of VO2.
more »
« less
Temperature-Independent Thermal Radiation Design Using Phase-Change Materials
The ability to treat the surface of an object with coatings that counteract the change in radiance resulting from the object’s blackbody emission can be very useful for applications requiring temperature-independent radiance behavior. Such a response is difficult to achieve with most materials except when using phase-change materials, which can undergo a drastic change in their optical response, nullifying the changes in blackbody radiation across a narrow range of temperatures. We report on the theoretical design, giving the possibility of extending the temperature range for temperature-independent radiance coatings by utilizing multiple layers, each comprising a different phase-change material. These designed multilayer coatings are based on thin films of samarium nickelate, vanadium dioxide, and doped vanadium oxide and cover temperatures ranging from room temperature to up to 140 °C. The coatings are numerically engineered in terms of layer thickness and doping, with each successive layer comprising a phase-change material with progressively higher transition temperatures than those below. Our calculations demonstrate that the optimized thin film multilayers exhibit a negligible change in the apparent temperature of the engineered surface. These engineered multilayer films can be used to mask an object’s thermal radiation emission against thermal imaging systems.
more »
« less
- Award ID(s):
- 2418519
- PAR ID:
- 10577865
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Coatings
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2079-6412
- Page Range / eLocation ID:
- 38
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Thermochromic vanadium dioxide thin films have attracted much attention recently for constructing variable-emittance coatings upon their insulator-metal phase transition for dynamic thermal control. However, fabrication of high-quality vanadium dioxide thin films in a cost-effective way is still a challenge. In addition, the phase transition temperature of vanadium dioxide is around 68 °C, which is higher than most of terrestrial and extraterrestrial applications. In this study, we report the fabrication and characterization of tungsten-doped vanadium dioxide thin films with lowered phase transition temperatures via co-sputtering, furnace oxidation, and thermal annealing processes for wider application needs. Doping is achieved by co-sputtering of tungsten and vanadium targets while the doping level is varied by carefully controlling the sputtering power for tungsten. Doped thin film samples of 30 nm thick with different tungsten atomic concentrations are prepared by co-sputtering onto undoped silicon wafers. Optimal oxidation time of 4 h is determined to reach full oxidation in an oxygen-rich furnace environment at 300 °C. A systematic thermal annealing study is carried out to find the optimal annealing temperature and time. By using an optical cryostat coupled to an infrared spectrometer, the temperature-dependent infrared transmittance of fully annealed tungsten-doped vanadium dioxide thin films is measured in a wide temperature range from −60 to 100 °C. The phase transition temperature is found to decrease at 24.5 °C per at. % of tungsten doping, and the thermal hysteresis between heating and cooling shrinks at 5.5 °C per at. % from the fabricated vanadium dioxide thin films with tungsten doping up to 4.1 at. %.more » « less
-
Vanadium oxide (VOx) compounds feature various polymorphs, including V2O5 and VO2, with attractive temperature-tunable optical and electrical properties. However, to achieve the desired material property, high-temperature post-deposition annealing of as-grown VOx films is mostly needed, limiting its use for low-temperature compatible substrates and processes. Herein, we report on the low-temperature hollow-cathode plasma-enhanced atomic layer deposition (ALD) of crystalline vanadium oxide thin films using tetrakis(ethylmethylamido)vanadium and oxygen plasma as a precursor and coreactant, respectively. To extract the impact of the type of plasma source, VOx samples were also synthesized in an inductively coupled plasma-enhanced ALD reactor. Moreover, we have incorporated in situ Ar-plasma and ex situ thermal annealing to investigate the tunability of VOx structural properties. Our findings confirm that both plasma-ALD techniques were able to synthesize as-grown polycrystalline V2O5 films at 150 °C. Postdeposition thermal annealing converted the as-grown V2O5 films into different crystalline VOx states: V2O3, V4O9, and VO2. The last one, VO2 is particularly interesting as a phase-change material, and the metal-insulator transition around 70 °C has been confirmed using temperature-dependent x-ray diffraction and resistivity measurements.more » « less
-
Thermal emission is the process by which all objects at nonzero temperatures emit light and is well described by the Planck, Kirchhoff, and Stefan–Boltzmann laws. For most solids, the thermally emitted power increases monotonically with temperature in a one-to-one relationship that enables applications such as infrared imaging and noncontact thermometry. Here, we demonstrated ultrathin thermal emitters that violate this one-to-one relationship via the use of samarium nickel oxide (SmNiO3), a strongly correlated quantum material that undergoes a fully reversible, temperature-driven solid-state phase transition. The smooth and hysteresis-free nature of this unique insulator-to-metal phase transition enabled us to engineer the temperature dependence of emissivity to precisely cancel out the intrinsic blackbody profile described by the Stefan–Boltzmann law, for both heating and cooling. Our design results in temperature-independent thermally emitted power within the long-wave atmospheric transparency window (wavelengths of 8 to 14 µm), across a broad temperature range of ∼30 °C, centered around ∼120 °C. The ability to decouple temperature and thermal emission opens a gateway for controlling the visibility of objects to infrared cameras and, more broadly, opportunities for quantum materials in controlling heat transfer.more » « less
-
Two-Dimensional and Three-Dimensional Ultrathin Multilayer Hydrogels through Layer-by-Layer AssemblyStimuli-responsive multilayer hydrogels have opened new opportunities to design hierarchically organized networks with properties controlled at the nanoscale. These multilayer materials integrate structural, morphological, and compositional versatility provided by alternating layer-bylayer polymer deposition with the capability for dramatic and reversible changes in volumes upon environmental triggers, a characteristic of chemically crosslinked responsive networks. Despite their intriguing potential, there has been limited knowledge about the structure−property relationships of multilayer hydrogels, partly because of the challenges in regulating network structural organization and the limited set of the instrumental pool to resolve structure and properties at nanometer spatial resolution. This Feature Article highlights our recent studies on advancing assembly technologies, fundamentals, and applications of multilayer hydrogels. The fundamental relationships among synthetic strategies, chemical compositions, and hydrogel architectures are discussed, and their impacts on stimuli-induced volume changes, morphology, and mechanical responses are presented. We present an overview of our studies on thin multilayer hydrogel coatings, focusing on controlling and quantifying the degree of layer intermixing, which are crucial issues in the design of hydrogels with predictable properties. We also uncover the behavior of stratified “multicompartment” hydrogels in response to changes in pH and temperature. We summarize the mechanical responses of free-standing multilayer hydrogels, including planar thin coatings and films with closed geometries such as hollow microcapsules and nonhollow hydrogel microparticles with spherical and nonspherical shapes. Finally, we will showcase potential applications of pH- and temperature-sensitive multilayer hydrogels in sensing and drug delivery. The knowledge about multilayer hydrogels can advance the rational design of polymer networks with predictable and well-tunable properties, contributing to modern polymer science and broadening hydrogel applications.more » « less
An official website of the United States government

