In this paper, we focus on the multiuser massive multiple-input single-output (MISO) downlink with low-cost 1-bit digital-to-analog converters (DACs) for PSK modulation, and propose a low-complexity refinement process that is applicable to any existing 1-bit precoding approaches based on the constructive interference (CI) formulation. With the decomposition of the signals along the detection thresholds, we first formulate a simple symbol-scaling method as the performance metric. The low-complexity refinement approach is subsequently introduced, where we aim to improve the introduced symbol-scaling performance metric by modifying the transmit signal on one antenna at a time. Numerical results validate the effectiveness of the proposed refinement method on existing approaches for massive MIMO with 1-bit DACs, and the performance improvements are most significant for the low-complexity quantized zero-forcing (ZF) method.
more »
« less
This content will become publicly available on May 14, 2026
Performance Comparison of Four Recombining Methods in a Synthetic Diversity Single-Input Multi-Output Receiver
In this paper, we considered four different interference suppression algorithms in a single-input multiple-output receiver, where channel diversity is intentionally introduced to improve interference tolerance. Matched filter (MF), zero forcing (ZF), blind interference estimation and suppression (BIES) which we had previously proposed, and minimum variance distortionless response (MVDR) are considered. Each algorithm is introduced, and the recombining weight vectors are derived. A loss function is defined to compare the performance of the algorithms, showing superior performance of MVDR, and confirming that the proposed BIES algorithm achieves a comparable performance to MVDR. The four algorithms are then applied on measured data from a chip that was designed and fabricated in \qty{45}{\nm} RF SOI process for the frequency range of 1.2-2.4GHz. Measurement results are compared for the four algorithms, confirming significant improvement by using MVDR, BIES, and ZF compared to MF for large interference, as predicted by the derived equations, and showing adaptability of MVDR and BIES to small levels of interference as opposed to ZF.
more »
« less
- Award ID(s):
- 2029836
- PAR ID:
- 10578753
- Publisher / Repository:
- IEEE
- Date Published:
- Subject(s) / Keyword(s):
- Interference suppression recombining algorithm loss zero forcing matched filter
- Format(s):
- Medium: X
- Location:
- IEEE International Symposium on Dynamic Spectrum Access Networks, London, UK
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Computational tools have been used in structural engineering design for numerous objectives, typically focusing on optimizing a design process. We first provide a detailed literature review for optimizing truss structures with metaheuristic algorithms. Then, we evaluate an effective solution for designing truss structures used in structural engineering through a method called the mountain gazelle optimizer, which is a nature-inspired meta-heuristic algorithm derived from the social behavior of wild mountain gazelles. We use benchmark problems for truss optimization and a penalty method for handling constraints. The performance of the proposed optimization algorithm will be evaluated by solving complex and challenging problems, which are common in structural engineering design. The problems include a high number of locally optimal solutions and a non-convex search space function, as these are considered suitable to evaluate the capabilities of optimization algorithms. This work is the first of its kind, as it examines the performance of the mountain gazelle optimizer applied to the structural engineering design field while assessing its ability to handle such design problems effectively. The results are compared to other optimization algorithms, showing that the mountain gazelle optimizer can provide optimal and efficient design solutions with the lowest possible weight.more » « less
-
This paper focuses on the analysis and optimization of a class of linear one-bit precoding schemes for a downlink massive MIMO system under Rayleigh fading channels. The considered class of linear one-bit precoding is fairly general, including the well-known matched filter (MF) and zero-forcing (ZF) precoding schemes as special cases. Our analysis is based on an asymptotic framework where the numbers of transmit antennas and users in the system grow to infinity with a fixed ratio. We show that, under the asymptotic assumption, the symbol error probability (SEP) of the considered linear one-bit precoding schemes converges to that of a scalar “signal plus independent Gaussian noise” model. This result enables us to provide accurate predictions for the SEP of linear one-bit precoding. Additionally, we also derive the optimal linear one-bit precoding scheme within the considered class based on our analytical results. Simulation results demonstrate the excellent accuracy of the SEP prediction and the optimality of the derived precoder.more » « less
-
Constructive interference exploited by symbol-level (SL) signal processing is a promising solution for addressing the inherent interference problem in dual-functional radar-communication (DFRC) signal designs. This paper considers an SL-DFRC signal design problem which maximizes the radar performance under communication performance constraints. We exploit the symmetrical non-convexity property of the communication-independent radar sensing metric to develop low- complexity yet efficient algorithms. We first propose a radar-to- DFRC (R2DFRC) algorithm that relies on the non-convexity of the radar sensing metric to find a set of radar-only solutions. Based on these solutions, we further exploit the symmetrical property of the radar sensing metric to efficiently design the DFRC signal. Since the radar sensing metric is independent of the communication channel and data symbols, the set of radar-only solutions can be constructed offline, therefore reducing the computational complexity. We then develop an accelerated R2DFRC algorithm that further reduces the complexity. Finally, we demonstrate the superiority of the proposed algorithms compared to existing methods in terms of both radar sensing and communication performance as well as computational complexity.more » « less
-
Reconfigurable intelligent surface (RIS) technology is a promising approach being considered for future wireless communications due to its ability to control signal propagation with low-cost elements. This paper explores the use of an RIS for clutter mitigation and target detection in radar systems. Unlike conventional reflect-only RIS, which can only adjust the phase of the reflected signal, or active RIS, which can also amplify the reflected signal at the cost of significantly higher complexity, noise, and power consumption, we exploit hybrid RIS that can configure both the phase and modulus of the impinging signal by absorbing part of the signal energy. Such RIS can be considered as a compromise solution between conventional reflect-only and active RIS in terms of complexity, power consumption, and degrees of freedoms (DoFs). We consider two clutter suppression scenarios: with and without knowledge of the target range cell. The RIS design is formulated by minimizing the received clutter echo energy when there is no information regarding the potential target range cell. This turns out to be a convex problem and can be efficiently solved. On the other hand, when target range cell information is available, we maximize the received signal-to-noise-plus-interference ratio (SINR). The resulting non-convex optimization problem is solved through fractional programming algorithms. Numerical results are presented to demonstrate the performance of the proposed hybrid RIS in comparison with conventional RIS in clutter suppression for target detection.more » « less
An official website of the United States government
