skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A methodology to derive scour fragility functions for masonry arch bridges
Frequency and intensity of hydrological hazards have increased. Consequently, riverine bridges are suffering damage due to flooding. Fragility functions are used to estimate such damage conditioned on hazard intensity. However, flood fragility functions are limited for riverine bridges, and generally lack for masonry bridges. This paper presents a methodology to derive flood fragility functions for masonry arch bridges accounting for component failure modes. Demand and capacity of bridge components are derived from existing analytical expressions, and account for aleatory uncertainties via Monte Carlo simulations. The methodology is illustrated using a UK masonry bridge, which collapsed due to winter flood-induced scour. The investigated bridge is divided into its components (e.g., arches, pier) and a scour fragility function is derived for the arch, based on a lognormal cumulative distribution fitting to the derived failure probability data. Future research will develop scour fragility functions for other bridge components.  more » « less
Award ID(s):
2103713
PAR ID:
10579270
Author(s) / Creator(s):
; ;
Publisher / Repository:
CRC Press
Date Published:
ISBN:
9781003323020
Page Range / eLocation ID:
1507 to 1514
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This study aimed to map the 2022 flood with a 16.5-year return period near a bridge on the Red River, close to Grafton City, North Dakota, and evaluate the scour potential around the bridge. The Red River Basin (RRB) near Grand Forks, ND, and Emerson, ND, is a cold region river vulnerable to floods. Local scouring around bridge piers during floods can lead to hydraulic structure failure. An Autonomous Surface Vehicle (ASV) equipped with LiDAR DEM data from the ND DWR’s LiDAR dataset was used to collect comprehensive bathymetry and discharge data, including the 2022 flood. The HEC-RAS model was used to create flood maps, and the Colorado State University (CSU) methodology was employed to assess local scour around the bridge pier. The study area recorded maximum velocities of 1.71 m/s, 1.87 m/s, and 1.56 m/s for discharge values of 368 m3/s, 784 m3/s, and 1335 m3/s, respectively, with higher velocities recorded upstream of the bridge. The maximum water depth reached 13.14 m during the peak discharge of 1335 m3/s. Higher discharge resulted in increased Froude number and contraction scour depth, with the latter continuing to increase even when the Froude number decreased as water reached the bridge deck. The study highlights the effectiveness of integrating ASVs, bathymetry, and LiDAR data to comprehensively understand flood dynamics and bridge scour in cold region rivers, offering the way for the development of effective flood control measures and strategies to safeguard critical infrastructure. 
    more » « less
  2. Risk assessment and life cycle cost analysis of electric power systems facilitate analysis and efficient management of compound risks from wind hazards and asset deteriorations. Fragility functions are key components for these analyses as they provide the probability of failure of poles given the hazard intensity. Despite a number of efforts that analyzed the wind fragility of utility wood poles, impacts of key design variables on the likelihood of failure of poles have not been yet characterized. This paper, for the first time, provides a set of multi-dimensional fragility models that are functions of key factors including class, age, and height of poles, number and diameter of conductors, span length, and wind speed and direction. Unlike existing generic pole fragility models, this new class of fragility functions is able to accurately represent various configurations of power distribution systems. Therefore, it can reliably support decisions for installation of new or replacement of existing damaged or decayed poles. The generated fragility models are also used to investigate impacts of design variables. For example, results indicate that when height is considered as a covariate for the fragility function, the likelihood of failure of wood poles for a given height increases with class number. However, if height is treated as an uncertain variable, and therefore, excluded as a covariate from the fragility model, lower classes of poles may have higher failure probability as they are often used for higher clearance limits. 
    more » « less
  3. The seismic fragility of a system is the probability that the system enters a damage state under seismic ground motions with specified characteristics. Plots of the seismic fragilities with respect to scalar ground motion intensity measures are called fragility curves. Recent studies show that fragility curves may not be satisfactory measures for structural seismic performance, since scalar intensity measures cannot comprehensively characterize site seismicity. The limitations of traditional seismic intensity measures, e.g., peak ground acceleration or pseudo-spectral acceleration, are shown and discussed in detail. A bivariate vector with coordinates moment magnitude m and source-to-site distance r is proposed as an alternative seismic intensity measure. Implicitly, fragility surfaces in the (m, r)-space could be used as graphical representations of seismic fragility. Unlike fragility curves, which are functions of scalar intensity measures, fragility surfaces are characterized by two earthquake-hazard parameters, (m, r). The calculation of fragility surfaces may be computationally expensive for complex systems. Thus, as solutions to this issue, a bi-variate log-normal parametric model and an efficient calculation method, based on stochastic-reduced-order models, for fragility surfaces are proposed. 
    more » « less
  4. Rollercoasters are challenging structures. Although the ever-changing geometry can guarantee a thrilling ride, the complexity of loading patterns due to the intricate geometry make testing and analysis of these structures challenging. Fatigue-induced damage is one of the most common types of damage experienced by civil engineering structures subjected to cyclic loading such as bridges and rollercoasters. Fatigue cracking eventually occurs when structures undergo a certain number of loading and unloading recurrences. This cyclic loading under stresses above a certain limit induces microcracking that can eventually propagate into failure of a member or connection. Because of the geometric and structural similarities between rollercoasters and bridge connections, similar techniques can be used for structural health monitoring and estimation of remaining fatigue life. Uniaxial fatigue analysis methods are widely used for the analysis of bridge connections. However, there is little guidance for the analysis of complex connections. They can experience variable amplitude, multiaxial, and non-proportional loading. In such cases uniaxial fatigue methods are insufficient and can lead to underestimates. A framework for the understanding and analysis of multiaxial fatigue damage using strain data collected from strain rosettes is presented. Uniaxial and multiaxial fatigue analysis methods proposed for non-proportional loading are compared. Methods proposed are applicable to both rollercoaster and bridge connections. The critical plane method is used for the estimation of multiaxial fatigue life. Results show that non-proportional loading and the accuracy of the critical plane estimation can cause a significant decrease in the estimates of remaining fatigue life. This methodology is anticipated to be used for real-time fatigue prognosis and evaluation tools for bridge networks. 
    more » « less
  5. The breaching of the Edenville dam and overtopping of the Sanford dam on May 19, 2020 have been the focus of significant geotechnical investigation, while considerably less scientific focus has been directed towards documenting the resulting damage to highway embankments, bridges, and homes downstream of the dams. The Geotechnical Extreme Events Reconnaissance (GEER 2020) Association deployed a small team to conduct field reconnaissance after the event with the goal of making preliminary observations of impacts to geostructures downstream of the Edenville and Sanford dams. Damage was concentrated in the city of Sanford while in the city of Midland, downstream of Sanford, flood waters did not reach heights that caused significant damage to bridges or property. The observations made by the GEER team suggest that bridge abutments, buried utilities in earthen structures, and timber-framed buildings downstream of dams and other high risk flood zones warrant additional considerations during design to increase resilience during extreme events. 
    more » « less