Abstract In this paper we prove a higher dimensional analogue of Carleson’s$$\varepsilon ^{2}$$ conjecture. Given two arbitrary disjoint Borel sets$$\Omega ^{+},\Omega ^{-}\subset \mathbb{R}^{n+1}$$ , and$$x\in \mathbb{R}^{n+1}$$ ,$$r>0$$ , we denote$$ \varepsilon _{n}(x,r) := \frac{1}{r^{n}}\, \inf _{H^{+}} \mathcal{H}^{n} \left ( ((\partial B(x,r)\cap H^{+}) \setminus \Omega ^{+}) \cup (( \partial B(x,r)\cap H^{-}) \setminus \Omega ^{-})\right ), $$ where the infimum is taken over all open affine half-spaces$$H^{+}$$ such that$$x \in \partial H^{+}$$ and we define$$H^{-}= \mathbb{R}^{n+1} \setminus \overline{H^{+}}$$ . Our first main result asserts that the set of points$$x\in \mathbb{R}^{n+1}$$ where$$ \int _{0}^{1} \varepsilon _{n}(x,r)^{2} \, \frac{dr}{r}< \infty $$ is$$n$$ -rectifiable. For our second main result we assume that$$\Omega ^{+}$$ ,$$\Omega ^{-}$$ are open and that$$\Omega ^{+}\cup \Omega ^{-}$$ satisfies the capacity density condition. For each$$x \in \partial \Omega ^{+} \cup \partial \Omega ^{-}$$ and$$r>0$$ , we denote by$$\alpha ^{\pm }(x,r)$$ the characteristic constant of the (spherical) open sets$$\Omega ^{\pm }\cap \partial B(x,r)$$ . We show that, up to a set of$$\mathcal{H}^{n}$$ measure zero,$$x$$ is a tangent point for both$$\partial \Omega ^{+}$$ and$$\partial \Omega ^{-}$$ if and only if$$ \int _{0}^{1} \min (1,\alpha ^{+}(x,r) + \alpha ^{-}(x,r) -2) \frac{dr}{r} < \infty . $$ The first result is new even in the plane and the second one improves and extends to higher dimensions the$$\varepsilon ^{2}$$ conjecture of Carleson.
more »
« less
This content will become publicly available on May 1, 2026
Unique Continuation for Locally Uniformly Distributed Measures
Abstract In this note we show that the support of a locallyk-uniform measure in$${\mathbb {R}}^{n+1}$$ satisfies a kind of unique continuation property. As a consequence, we show that locally uniformly distributed measures satisfy a weaker unique continuation property. This continues work of Kirchheim and Preiss (Math Scand 90(1): 152-160, 2002) and David, Kenig and Toro (Comm Pure Appl Math 54(4): 385-449, 2001) and lends additional evidence to the conjecture proposed by Kowalski and Preiss (J Reine Angew Math 379: 115-151, 1987) that each connected component of the support of a locallyn-uniform measure in$${\mathbb {R}}^{n+1}$$ is contained in the zero set of a quadratic polynomial.
more »
« less
- Award ID(s):
- 2143719
- PAR ID:
- 10582144
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- The Journal of Geometric Analysis
- Volume:
- 35
- Issue:
- 5
- ISSN:
- 1050-6926
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Consider two half-spaces$$H_1^+$$ and$$H_2^+$$ in$${\mathbb {R}}^{d+1}$$ whose bounding hyperplanes$$H_1$$ and$$H_2$$ are orthogonal and pass through the origin. The intersection$${\mathbb {S}}_{2,+}^d:={\mathbb {S}}^d\cap H_1^+\cap H_2^+$$ is a spherical convex subset of thed-dimensional unit sphere$${\mathbb {S}}^d$$ , which contains a great subsphere of dimension$$d-2$$ and is called a spherical wedge. Choosenindependent random points uniformly at random on$${\mathbb {S}}_{2,+}^d$$ and consider the expected facet number of the spherical convex hull of these points. It is shown that, up to terms of lower order, this expectation grows like a constant multiple of$$\log n$$ . A similar behaviour is obtained for the expected facet number of a homogeneous Poisson point process on$${\mathbb {S}}_{2,+}^d$$ . The result is compared to the corresponding behaviour of classical Euclidean random polytopes and of spherical random polytopes on a half-sphere.more » « less
-
Abstract We study holomorphic mapsFfrom a smooth Levi non-degenerate real hypersurface$$ M_{\ell }\subset {\mathbb {C}}^n $$ into a hyperquadric$$ {\mathbb {H}}_{\ell '}^N $$ with signatures$$ \ell \le (n-1)/2 $$ and$$ \ell '\le (N-1)/2,$$ respectively. Assuming that$$ N - n < n - 1,$$ we prove that if$$ \ell = \ell ',$$ thenFis either CR transversal to$$ {\mathbb {H}}_{\ell }^N $$ at every point of$$ M_{\ell },$$ or it maps a neighborhood of$$ M_{\ell } $$ in$$ {\mathbb {C}}^n $$ into$$ {\mathbb {H}}_{\ell }^N.$$ Furthermore, in the case where$$ \ell ' > \ell ,$$ we show that ifFis not CR transversal at$$0\in M_\ell ,$$ then it must be transversally flat. The latter is best possible.more » « less
-
Abstract Given a suitable solutionV(t, x) to the Korteweg–de Vries equation on the real line, we prove global well-posedness for initial data$$u(0,x) \in V(0,x) + H^{-1}(\mathbb {R})$$ . Our conditions onVdo include regularity but do not impose any assumptions on spatial asymptotics. We show that periodic profiles$$V(0,x)\in H^5(\mathbb {R}/\mathbb {Z})$$ satisfy our hypotheses. In particular, we can treat localized perturbations of the much-studied periodic traveling wave solutions (cnoidal waves) of KdV. In the companion paper Laurens (Nonlinearity. 35(1):343–387, 2022.https://doi.org/10.1088/1361-6544/ac37f5) we show that smooth step-like initial data also satisfy our hypotheses. We employ the method of commuting flows introduced in Killip and Vişan (Ann. Math. (2) 190(1):249–305, 2019.https://doi.org/10.4007/annals.2019.190.1.4) where$$V\equiv 0$$ . In that setting, it is known that$$H^{-1}(\mathbb {R})$$ is sharp in the class of$$H^s(\mathbb {R})$$ spaces.more » « less
-
Abstract While studying set function properties of Lebesgue measure, F. Barthe and M. Madiman proved that Lebesgue measure is fractionally superadditive on compact sets in$$\mathbb {R}^n$$ . In doing this they proved a fractional generalization of the Brunn–Minkowski–Lyusternik (BML) inequality in dimension$$n=1$$ . In this paper we will prove the equality conditions for the fractional superadditive volume inequalites for any dimension. The non-trivial equality conditions are as follows. In the one-dimensional case we will show that for a fractional partition$$(\mathcal {G},\beta )$$ and nonempty sets$$A_1,\dots ,A_m\subseteq \mathbb {R}$$ , equality holds iff for each$$S\in \mathcal {G}$$ , the set$$\sum _{i\in S}A_i$$ is an interval. In the case of dimension$$n\ge 2$$ we will show that equality can hold if and only if the set$$\sum _{i=1}^{m}A_i$$ has measure 0.more » « less
An official website of the United States government
