skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Building Climate-Resilient Crops: Genetic, Environmental, and Technological Strategies for Heat and Drought Stress Tolerance
Abstract Global crop production faces increasing threats from the rise in frequency, duration, and intensity of drought and heat stress events due to climate change. Most staple food crops, including wheat, rice, soybean, and corn that provide over half of the world's caloric intake, are not well-adapted to withstand heat or drought. Efforts to breed or engineer stress-tolerant crops have had limited success due to the complexity of tolerance mechanisms and the variability of agricultural environments. Effective solutions require a shift towards fundamental research that incorporates realistic agricultural settings and focuses on practical outcomes for farmers. This review explores the genetic and environmental factors affecting heat and drought tolerance in major crops, examines the physiological and molecular mechanisms underlying these stress responses, and evaluates the limitations of current breeding programs and models. It also discusses emerging technologies and approaches that could enhance crop resilience, such as synthetic biology, advanced breeding techniques, and high-throughput phenotyping. Finally, this review emphasizes the need for interdisciplinary research and collaboration with stakeholders to translate fundamental research into practical agricultural solutions.  more » « less
Award ID(s):
2406533 2434687
PAR ID:
10583368
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Society fro Experimental Biology
Date Published:
Journal Name:
Journal of Experimental Botany
ISSN:
0022-0957
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Drought differs from other natural disasters in several respects, largely because of the complexity of a crop’s response to it and also because we have the least understanding of a crop’s inductive mechanism for addressing drought tolerance among all abiotic stressors. Overall, the growth and productivity of crops at a global level is now thought to be an issue that is more severe and arises more frequently due to climatic change-induced drought stress. Among the major crops, rice is a frontline staple cereal crop of the developing world and is critical to sustaining populations on a daily basis. Worldwide, studies have reported a reduction in rice productivity over the years as a consequence of drought. Plants are evolutionarily primed to withstand a substantial number of environmental cues by undergoing a wide range of changes at the molecular level, involving gene, protein and metabolite interactions to protect the growing plant. Currently, an in-depth, precise and systemic understanding of fundamental biological and cellular mechanisms activated by crop plants during stress is accomplished by an umbrella of -omics technologies, such as transcriptomics, metabolomics and proteomics. This combination of multi-omics approaches provides a comprehensive understanding of cellular dynamics during drought or other stress conditions in comparison to a single -omics approach. Thus a greater need to utilize information (big-omics data) from various molecular pathways to develop drought-resilient crop varieties for cultivation in ever-changing climatic conditions. This review article is focused on assembling current peer-reviewed published knowledge on the use of multi-omics approaches toward expediting the development of drought-tolerant rice plants for sustainable rice production and realizing global food security. 
    more » « less
  2. Climate change is altering our environment, subjecting multiple agroecosystems worldwide to an increased frequency and intensity of abiotic stress conditions such as heat, drought, flooding, salinity, cold and/or their potential combinations. These stresses impact plant growth, yield and survival, causing losses of billions of dollars to agricultural productivity, and in extreme cases they lead to famine, migration and even wars. As the rate of change in our environment has dramatically accelerated in recent years, more research is urgently needed to discover and develop new ways and tools to increase the resilience of crops to different stress conditions. In this theme issue, new studies addressing the molecular, metabolic, and physiological responses of crops and other plants to abiotic stress challenges are discussed, as well as the potential to exploit these mechanisms in biotechnological applications aimed at preserving and/or increasing crop yield under our changing climate conditions. This article is part of the theme issue ‘Crops under stress: can we mitigate the impacts of climate change on agriculture and launch the ‘Resilience Revolution’?’ 
    more » « less
  3. Lawson, Tracy (Ed.)
    Abstract Episodes of heat waves combined with drought can have a devastating impact on agricultural production worldwide. These conditions, as well as many other types of stress combinations, impose unique physiological and developmental demands on plants and require the activation of dedicated pathways. Here, we review recent RNA sequencing studies of stress combination in plants, and conduct a meta-analysis of the transcriptome response of plants to different types of stress combination. Our analysis reveals that each different stress combination is accompanied by its own set of stress combination-specific transcripts, and that the response of different transcription factor families is unique to each stress combination. The alarming rate of increase in global temperatures, coupled with the predicted increase in future episodes of extreme weather, highlight an urgent need to develop crop plants with enhanced tolerance to stress combination. The uniqueness and complexity of the physiological and molecular response of plants to each different stress combination, highlighted here, demonstrate the daunting challenge we face in accomplishing this goal. Dedicated efforts combining field experimentation, omics, and network analyses, coupled with advanced phenotyping and breeding methods, will be needed to address specific crops and particular stress combinations relevant to maintaining our future food chain secured. 
    more » « less
  4. SUMMARY Genome editing technologies like CRISPR/Cas have greatly accelerated the pace of both fundamental research and translational applications in agriculture. However, many plant biologists are functionally limited to creating small, targeted DNA changes or large, random DNA insertions. The ability to efficiently generate large, yet precise, DNA changes will massively accelerate crop breeding cycles, enabling researchers to more efficiently engineer crops amidst a rapidly changing agricultural landscape. This review provides an overview of existing technologies that allow plant biologists to integrate large DNA sequences within a plant host and some associated technical bottlenecks. Additionally, this review explores a selection of emerging techniques in other host systems to inspire tool development in plants. 
    more » « less
  5. An increase in the frequency and intensity of heat waves, floods, droughts and other environmental stresses, resulting from climate change, is threatening agricultural food production worldwide. Heat waves are especially problematic to grain yields, as the reproductive processes of almost all our main grain crops are highly sensitive to heat. At times, heat waves can occur together with drought, high ozone levels, pathogen infection and/or waterlogging stress that suppress the overall process of plant cooling by transpiration. We recently reported that under conditions of heat and water-deficit stress combination, the stomata on sepals and pods of soybean (Glycine max) remain open, while the stomata on leaves close. This process, termed ‘differential transpiration’, enabled the cooling of reproductive organs, while leaf temperature increased owing to suppressed transpiration. In this review article, we focus on the impacts on crops of heat waves occurring in isolation and of heat waves combined with drought or waterlogging stress, address the main processes impacted in plants by these stresses and discuss ways to mitigate the negative effects of isolated heat waves and of heat waves that occur together with other stresses (i.e. stress combination), on crops, with a focus on the process of differential transpiration. This article is part of the theme issue ‘Crops under stress: can we mitigate the impacts of climate change on agriculture and launch the ‘Resilience Revolution’?’. 
    more » « less