skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Energy amplification in plasma crystals due to multiple torsions
Interacting torsions are examined within a two-dimensional monolayer crystal suspended in an argon complex plasma for 1–10 W discharge powers and pressures of 135–155 mTorr. Two torsions embedded in a lattice are shown to amplify the kinetic energy and range of motion of particles located between the torsions to nearly three times that observed in single torsion systems. It is also shown that multiple torsions can interact via amplified particle energy when separated by up to 14 interparticle distances (Δ). The torsion separation distance also showed a positive linear trend with power and a slightly positive correlation with the pressure. This amplification of energy is possible due to the fact that multiple torsions in a lattice increase the interparticle distance of the lattice by 16% more than single torsion systems, leading to additional freedom of motion in the lattice plane. These combined findings show that multiple torsions heat the lattice differently depending on their separation from the other torsion. The midpoint particles between torsions absorb the majority of energy from the two torsions, and energy addition at the midpoint is nonlinear. The addition of more torsions to the lattice may lead to melting of the plasma crystal.  more » « less
Award ID(s):
2308743
PAR ID:
10591972
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Physics of Plasmas
Volume:
31
Issue:
12
ISSN:
1070-664X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report on the collective behavior of active particles in which energy is continuously supplied to rotational degrees of freedom. The active spinners are 3D-printed disks, 1 cm in diameter, that have an embedded fan-like structure, such that a sub-levitating up-flow of air forces them to spin. Single spinners exhibit Brownian motion with a narrow Gaussian velocity distribution function, P ( v ), for translational motion. We study the evolution of P ( v ) as the packing fraction and the average single particle spin speeds are varied. The interparticle hydrodynamic interaction is negligible, and the dynamics is dominated by hyperelastic collisions and dissipative forces. As expected for nonequilibrium systems, P ( v ) for a collection of many spinners deviates from Gaussian behavior. However, unlike translationally active systems, phase separation is not observed, and the system remains spatially homogeneous. We then search for a near-equilibrium counterpart for our active spinners by measuring the equation of state. Interestingly, it agrees well with a hard-sphere model, despite the dissipative nature of the single particle dynamics. 
    more » « less
  2. We model near-field thermal emission from metasurfaces structured as two-dimensional arrays of ellipsoidal SiC particles. The modeling approach is developed from fluctuational electrodynamics and is applicable to systems of ellipsoidal particles within the dipole limit. In all simulations, the radial lengths of particles are restricted to the range of 10–100 nm, and interparticle spacing is constrained to at least three times the particle characteristic length. The orientation and dimensions of constituent ellipsoidal particles are varied to tune localized surface phonon resonances and control the near-field energy density above metasurfaces. Results show that particle orientation can be used to regulate the relative magnitude of resonances in the energy density, and particle dimensions may be changed to adjust the frequency of these resonances within the Reststrahlen band. Metasurfaces constructed from particles with randomized dimensions display comparatively broadband thermal emission rather than the three distinct resonances seen in metasurfaces made with ellipsoidal particles of equivalent dimensions. When the interparticle spacing in a metasurface exceeds about three times the particle characteristic length, the spectral energy density above the metasurface is dominated by individual particle self-interaction and can be approximated as a linear combination of single-particle spectra. When interparticle spacing is at the lower limit of three times the characteristic length, however, multiparticle interaction effects increase and the spectral energy density above a metasurface deviates from that of single particles. This work provides guidance for designing all-dielectric, particle-based metasurfaces with desired near-field thermal emission spectra, such as thermal switches. 
    more » « less
  3. Although dense colloidal gels with interparticle bonds of order several kT are typically described as resulting from an arrest of phase separation, they continue to coarsen with age, owing to the dynamics of their temporary bonds. Here, k is Boltzmann's constant and T is the absolute temperature. Computational studies of gel aging reveal particle-scale dynamics reminiscent of condensation that suggests very slow but ongoing phase separation. Subsequent studies of delayed yield reveal structural changes consistent with re-initiation of phase separation. In the present study we interrogate the idea that mechanical yield is connected to a release from phase arrest. We study aging and yield of moderately concentrated to dense reversible colloidal gels and focus on two macroscopic hallmarks of phase separation: increases in surface-area to volume ratio that accompanies condensation, and minimization of free energy. The interplay between externally imposed fields, Brownian motion, and interparticle forces during aging or yield, changes the distribution of bond lengths throughout the gel, altering macroscopic potential energy. The gradient of the microscopic potential (the interparticle force) gives a natural connection of potential energy to stress. We find that the free energy decreases with age, but this slows down as bonds get held stretched by glassy frustration. External perturbations break just enough bonds to liberate negative osmotic pressure, which we show drives a cascade of bond relaxation and rapid reduction of the potential energy, consistent with renewed phase separation. Overall, we show that mechanical yield of reversible colloidal gels releases kinetic arrest and can be viewed as non-equilibrium phase separation. 
    more » « less
  4. We report thermo-mechanically responsive and thermochromic behavior in the single crystalline organic semiconductor butoxyphenyl N -substituted naphthalene diimide (BNDI). We show that initially monoclinic single crystals of BNDI undergo a single-crystal to single-crystal transition to a triclinic phase. This transition accompanies large changes in the crystal packing, a visible decrease in crystal size, reversible thermochromic behavior, and motion including bending, jumping, and splitting. We have shown that by fixing single crystals to a surface, we can harness the energy of the phase transition to create a single crystal cantilever capable of lifting weights with masses nigh two orders of magnitude heavier than the single crystal itself. 
    more » « less
  5. In this study, we numerically investigate the transport properties of a two‐dimensional (2D) complex plasma crystal using diffusion of coplanar dust lattice waves. In the limit where the Hamiltonian interactions can be decoupled from the non‐Hamiltonian effects, we identify two distinct types of wave transport: Anderson‐type delocalization and long‐distance excitation. We use a recently developed spectral approach to evaluate the contribution of the Anderson problem and compare it to the results of the simulation. The benefit of our approach to transport problems is twofold. First, we employ a highly tuneable macroscopic hexagonal crystal, which exhibits many‐body interactions and allows for the investigation of transport properties at the kinetic level. Second, the analysis of the transport problem in2Dis provided using an innovative spectral approach, which avoids the use of scaling and boundary conditions. The comparison between the analytically predicted and numerically observed wave dynamics allows for the study of important characteristics of this open system. In our simulations, we observe long‐distance lattice excitation, which occurs around lattice defects even when the initial perturbation does not spread from the centre to the exterior of the crystal. In the decoupled Hamiltonian regime, this many‐body effect can be attributed to the dust lattice interaction with the plasma environment. 
    more » « less