We characterize the maximizers of a functional that involves the minimization of the Wasserstein distance between sets of equal volume. We prove that balls are the only maximizers by combining a symmetrization-by-reflection technique with the uniqueness of optimal transport plans. Further, in one dimension, we provide a sharp quantitative refinement of this maximality result.
more »
« less
This content will become publicly available on May 19, 2026
On the Spectrum of Sturmian Hamiltonians of Bounded Type in a Small Coupling Regime
We prove the nonstationary bounded distortion property for smooth dynamical systems on multidimensional spaces. The results we obtain are motivated by potential application to study of spectral properties of discrete Schrödinger operators with potentials generated by Sturmian sequences.
more »
« less
- Award ID(s):
- 2247966
- PAR ID:
- 10592951
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Annales Henri Poincaré
- ISSN:
- 1424-0637
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We study the relationship of zonal gravity coefficients, J 2 n , zonal winds, and axial moment of inertia (MoI) by constructing models for the interiors of giant planets. We employ the nonperturbative concentric Maclaurin spheroid method to construct both physical (realistic equation of state and barotropes) and abstract (small number of constant-density spheroids) interior models. We find that accurate gravity measurements of Jupiter’s and Saturn’s J 2 , J 4 , and J 6 by the Juno and Cassini spacecraft do not uniquely determine the MoI of either planet but do constrain it to better than 1%. Zonal winds (or differential rotation (DR)) then emerge as the leading source of uncertainty. For Saturn they are predicted to decrease the MoI by 0.4% because they reach a depth of ∼9000 km, while on Jupiter they appear to reach only ∼3000 km. We thus predict DR to affect Jupiter’s MoI by only 0.01%, too small by one order of magnitude to be detectable by the Juno spacecraft. We find that winds primarily affect the MoI indirectly via the gravity harmonic J 6 , while direct contributions are much smaller because the effects of pro- and retrograde winds cancel. DR contributes +6% and −0.8% to Saturn’s and Jupiter’s J 6 value, respectively. This changes the J 6 contribution that comes from the uniformly rotating bulk of the planet that correlates most strongly with the predicted MoI. With our physical models, we predict Jupiter’s MoI to be 0.26393 ± 0.00001. For Saturn, we predict 0.2181 ± 0.0002, assuming a rotation period of 10:33:34 hr that matches the observed polar radius.more » « less
-
Abstract Putman and Wieland conjectured that if is a finite branched cover between closed oriented surfaces of sufficiently high genus, then the orbits of all nonzero elements of under the action of lifts to of mapping classes on are infinite. We prove that this holds if is generated by the homology classes of lifts of simple closed curves on . We also prove that the subspace of spanned by such lifts is a symplectic subspace. Finally, simple closed curves lie on subsurfaces homeomorphic to 2‐holed spheres, and we prove that is generated by the homology classes of lifts of loops on lying on subsurfaces homeomorphic to 3‐holed spheres.more » « less
-
We prove near-tight concentration of measure for polynomial functions of the Ising model, under high temperature, improving the radius of concentration guaranteed by known results by polynomial factors in the dimension (i.e.~the number of nodes in the Ising model). We show that our results are optimal up to logarithmic factors in the dimension. We obtain our results by extending and strengthening the exchangeable-pairs approach used to prove concentration of measure in this setting by Chatterjee. We demonstrate the efficacy of such functions as statistics for testing the strength of interactions in social networks in both synthetic and real world data.more » « less
-
We have discovered a peculiar form of fracture that occurs in polymer network formed by covalent adaptable bonds. Due to the dynamic feature of the bonds, fracture of this network is rate dependent, and the crack propagates in a highly nonsteady manner. These phenomena cannot be explained by the existing fracture theories, most of which are based on steady-state assumption. To explain these peculiar characteristics, we first revisit the fundamental difference between the transient network and the covalent network in which we highlighted the transient feature of the cracks. We extend the current fracture criterion for crack initiation to a time-evolution scheme that allows one to track the nonsteady propagation of a crack. Through a combined experimental modeling effort, we show that fracture in transient networks is governed by two parameters: the Weissenberg number that defines the history path of crack-driving force and an extension parameter Z that tells how far a crack can grow. We further use our understanding to explain the peculiar experimental observation. To further leverage on this understanding, we show that one can “program” a specimen’s crack extension dynamics by tuning the loading history.more » « less
An official website of the United States government
