skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 21, 2026

Title: Advancing transcriptomic profiling of airborne bacteria
ABSTRACT Aerobiology research focusing on bioaerosol particle dynamics has catalogued the identity, distribution, and abundance of airborne microbes in a broad variety of indoor environments and, more recently, indoor disinfection methods for medically relevant microbes. Given their importance in environmental health and our constant exposure to airborne microbes in our daily lives, surprisingly little is known about the activity of live bioaerosols and their metabolic responses to aerosolization and suspension stress. In this context, microbial messenger RNA (mRNA) is a powerful information source of near-real-time organismal responses that cannot be attained through genomic, proteomic, or metabolomic studies. This review discusses current knowledge from transcriptomic studies describing airborne bacterial cellular activity in response to a myriad of environmental stresses imparted rapidly upon aerosolization and continued suspension as a microscopic bioaerosol. In the context of transcriptome profiling, potential artifacts associated with aerosolization/collection of bioaerosols are discussed from the perspective of preserving mRNA and maintaining its fidelity as it exists in airborne microbes. Recommendations for advancing live bioaerosol metabolic profiling through gene expression studies are presented to mitigate inherent artifacts and challenges with modern bioaerosol experiments. These recommendations include the use of larger experimental chambers, temperature control during aerosolization processes, and liquid capture bioaerosol sampling into a nucleic acid preservative to improve the fidelity of collected RNA and better capture the transcriptional activity of airborne microorganisms. Eventually, improvements in profiling bioaerosol activity can contribute toward answering fundamental questions on the aerobiome such as: is the atmosphere a temporary highway or a habitat for microorganisms?  more » « less
Award ID(s):
2120117
PAR ID:
10596629
Author(s) / Creator(s):
; ;
Editor(s):
Zhou, Ning-Yi
Publisher / Repository:
American Society of Microbiology
Date Published:
Journal Name:
Applied and Environmental Microbiology
Volume:
91
Issue:
5
ISSN:
0099-2240
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Ultraviolet germicidal irradiation (UVGI) and ozone disinfection are crucial methods for mitigating the airborne transmission of pathogenic microorganisms in high-risk settings, particularly with the emergence of respiratory viral pathogens such as SARS-CoV-2 and avian influenza viruses. This study quantitatively investigates the influence of UVGI and ozone on the viability ofE. coliin bioaerosols, with a particular focus on howE. coliviability depends on the size of the bioaerosols, a critical factor that determines deposition patterns within the human respiratory system and the evolution of bioaerosols in indoor environments. This study used a controlled small-scale laboratory chamber whereE. colisuspensions were aerosolized and subjected to varying levels of UVGI and ozone levels throughout the exposure time (2–6 s). The normalized viability ofE. coliwas found to be significantly reduced by UVGI (60–240μW s cm−2) as the exposure time increased from 2 to 6 s, and the most substantial reduction ofE. colinormalized viability was observed when UVGI and ozone (65–131 ppb) were used in combination. We also found that UVGI reduced the normalized viability ofE. coliin bioaerosols more significantly with smaller sizes (0.25–0.5μm) than with larger sizes (0.5–2.5μm). However, when combining UVGI and ozone, the normalized viability was higher for smaller particle sizes than for the larger ones. The findings provide insights into the development of effective UVGI disinfection engineering methods to control the spread of pathogenic microorganisms in high-risk environments. By understanding the influence of the viability of microorganisms in various bioaerosol sizes, we can optimize UVGI and ozone techniques to reduce the potential risk of airborne transmission of pathogens. 
    more » « less
  2. Abstract Recent studies have suggested that microbial aerosolization in wildfire smoke is an understudied source of microbes to the atmosphere. Wildfire smoke can travel thousands of kilometers from its source with the potential to facilitate the transport of microbes, including microbes that can have far‐reaching impacts on human or ecosystem health. However, the relevance of longer‐range detection of microbes in smoke plumes remains undetermined, as previous studies have mainly focused on analyses of bioaerosols collected adjacent to or directly above wildfires. Therefore, we investigated whether wildfire smoke estimated to originate >30 km from different wildfire sources would contain detectable levels of bacterial and fungal DNA at ground level, hypothesizing that smoke‐impacted air would harbor greater amounts and a distinct composition of microbes as compared to ambient air. We used cultivation‐independent approaches to analyze 150 filters collected over time from three sampling locations in the western United States, of which 34 filters were determined to capture wildfire smoke events. Contrary to our hypothesis, smoke‐impacted samples harbored lower amounts of microbial DNA. Likewise, there was a limited signal in the composition of the microbial assemblages detected in smoke‐affected samples as compared to ambient air, but we did find that changes in humidity were associated with temporal variation in the composition of the bacterial and fungal bioaerosols. With our study design, we were unable to detect a robust and distinct microbial signal in ground‐level smoke originating from distant wildfires. 
    more » « less
  3. null (Ed.)
    Microorganisms are ubiquitous and highly diverse in the atmosphere. Despite the potential impacts of airborne bacteria found in the lower atmosphere over the Southern Ocean (SO) on the ecology of Antarctica and on marine cloud phase, no previous region-wide assessment of bioaerosols over the SO has been reported. We conducted bacterial profiling of boundary layer shipboard aerosol samples obtained during an Austral summer research voyage, spanning 42.8 to 66.5°S. Contrary to findings over global subtropical regions and the Northern Hemisphere, where transport of microorganisms from continents often controls airborne communities, the great majority of the bacteria detected in our samples were marine, based on taxonomy, back trajectories, and source tracking analysis. Further, the beta diversity of airborne bacterial communities varied with latitude and temperature, but not with other meteorological variables. Limited meridional airborne transport restricts southward community dispersal, isolating Antarctica and inhibiting microorganism and nutrient deposition from lower latitudes to these same regions. A consequence and implication for this region’s marine boundary layer and the clouds that overtop it is that it is truly pristine, free from continental and anthropogenic influences, with the ocean as the dominant source controlling low-level concentrations of cloud condensation nuclei and ice nucleating particles. 
    more » « less
  4. Summary Bioaerosols are an important component of the total atmospheric aerosol load, with implications for human health, climate feedbacks and the distribution and dispersal of microbial taxa. Bioaerosols are sourced from marine, freshwater and terrestrial surfaces, with different mechanisms potentially responsible for releasing biological particles from these substrates. Little is known about the production of freshwater and terrestrial bioaerosols in polar regions. We used portable collection devices to test for the presence of picocyanobacterial aerosols above freshwater and soil substrates in the southwestern Greenland tundra and the McMurdo Dry Valleys of Antarctica. We show that picocyanobacterial cells are present in the near‐surface air at concentrations ranging from 2,431 to 28,355 cells m−3of air, with no significant differences among substrates or between polar regions. Our concentrations are lower than those measured using the same methods in temperate ecosystems. We suggest that aerosolization is an important process linking terrestrial and aquatic ecosystems in these polar environments, and that future work is needed to explore aerosolization mechanisms and taxon‐specific aerosolization rates. Our study is a first step toward understanding the production of bioaerosols in extreme environments dominated by microbial life. 
    more » « less
  5. Analyses of gene expression of subsurface bacteria and archaea provide insights into their physiological adaptations to in situ subsurface conditions. We examined patterns of expressed genes in hydrothermally heated subseafloor sediments with distinct geochemical and thermal regimes in Guaymas Basin, Gulf of California, Mexico. RNA recovery and cell counts declined with sediment depth, however, we obtained metatranscriptomes from eight sites at depths spanning between 0.8 and 101.9m below seafloor. We describe the metabolic potential of sediment microorganisms, and discuss expressed genes involved in tRNA, mRNA, and rRNA modifications that enable physiological flexibility of bacteria and archaea in the hydrothermal subsurface. Microbial taxa in hydrothermally influenced settings like Guaymas Basin may particularly depend on these catalytic RNA functions since they modulate the activity of cells under elevated temperatures and steep geochemical gradients. Expressed genes for DNA repair, protein maintenance and circadian rhythm were also identified. The concerted interaction of many of these genes may be crucial for microorganisms to survive and to thrive in the Guaymas Basin subsurface biosphere. 
    more » « less