skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 26, 2026

Title: Warming Disrupts Plant–Fungal Endophyte Symbiosis More Severely in Leaves Than Roots
ABSTRACT Disruptions to functionally important symbionts with global change will negatively impact plant fitness, with broader consequences for species' abundances, distribution, and community composition. Fungal endophytes that live inside plant leaves and roots could potentially mitigate plant heat stress from global warming. Conversely, disruptions of these symbioses could exacerbate the negative impacts of warming. To better understand the consistency and strength of warming‐induced changes to fungal endophytes, we examined fungal leaf and root endophytes in three grassland warming experiments in the US ranging from 2 to 25 years and spanning 2000 km, 12°C of mean annual temperature, and 600 mm of precipitation. We found that experimental warming disrupted symbiosis between plants and fungal endophytes. Colonization of plant tissues by septate fungi decreased in response to warming by 90% in plant leaves and 35% in roots. Warming also reduced fungal diversity and changed community composition in plant leaves, but not roots. The strength, but not direction, of warming effects on fungal endophytes varied by up to 75% among warming experiments. Finally, warming decoupled fungal endophytes from host metabolism by decreasing the correlation between endophyte community and host metabolome dissimilarity. These effects were strongest in the shorter‐term experiment, suggesting endophyte‐host metabolome function may acclimate to warming over decades. Overall, warming‐driven disruption of fungal endophyte community structure and function suggests that this symbiosis may not be a reliable mechanism to promote plant resilience and ameliorate stress responses under global change.  more » « less
Award ID(s):
2305863 2338421 2106065 1936195 2217353 2412561
PAR ID:
10596701
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
31
Issue:
4
ISSN:
1354-1013
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Foliar fungal endophytes are ubiquitous plant symbionts that can affect plant growth and reproduction via their roles in pathogen and stress tolerance, as well as plant hormonal signaling. Despite their importance, we have a limited understanding of how foliar fungal endophytes respond to varying environmental conditions such as nutrient inputs. The responses of foliar fungal endophyte communities to increased nutrient deposition may be mediated by the simultaneous effects on within‐host competition as well as the indirect impacts of altered host population size, plant productivity, and plant community diversity and composition. Here, we leveraged a 7‐yr experiment manipulating nitrogen, phosphorus, potassium, and micronutrients to investigate how nutrient‐induced changes to plant diversity, plant productivity, and plant community composition relate to changes in foliar fungal endophyte diversity and richness in a focal native grass host,Andropogon gerardii. We found limited evidence of direct effects of nutrients on endophyte diversity. Instead, the effects of nutrients on endophyte diversity appeared to be mediated by accumulation of plant litter and plant diversity loss. Specifically, nitrogen addition is associated with a 40% decrease in plant diversity and an 11% decrease in endophyte richness. Although nitrogen, phosphorus, and potassium addition increased aboveground live biomass and decreased relativeAndropogoncover, endophyte diversity did not covary with live plant biomass orAndropogoncover. Our results suggest that fungal endophyte diversity within this focal host is determined in part by the diversity of the surrounding plant community and its potential impact on immigrant propagules and dispersal dynamics. Our results suggest that elemental nutrients reduce endophyte diversity indirectly via impacts on the local plant community, not direct response to nutrient addition. Thus, the effects of global change drivers, such as nutrient deposition, on characteristics of host populations and the diversity of their local communities are important for predicting the response of symbiont communities in a changing global environment. 
    more » « less
  2. Abstract Nearly all plants are colonized by fungal endophytes, and a growing body of work shows that both environment and host species shape plant-associated fungal communities. However, few studies place their work in a phylogenetic context to understand endophyte community assembly through an evolutionary lens. Here, we investigated environmental and host effects on root endophyte assemblages in coastal Louisiana marshes. We isolated and sequenced culturable fungal endophytes from roots of three to four dominant plant species from each of three sites of varying salinity. We assessed taxonomic diversity and composition as well as phylogenetic diversity (mean phylogenetic distance, MPD) and phylogenetic composition (based on MPD). When we analyzed plant hosts present across the entire gradient, we found that the effect of the environment on phylogenetic diversity (as measured by MPD) was host dependent and suggested phylogenetic clustering in some circumstances. We found that both environment and host plant affected taxonomic composition of fungal endophytes, but only host plant affected phylogenetic composition, suggesting different host plants selected for fungal taxa drawn from distinct phylogenetic clades, whereas environmental assemblages were drawn from similar clades. Our study demonstrates that including phylogenetic, as well as taxonomic, community metrics can provide a deeper understanding of community assembly in endophytes. 
    more » « less
  3. Nearly all plants are colonized by fungal endophytes, and a growing body of work shows that both environment and host species shape plant-associated fungal communities. However, few studies place their work in a phylogenetic context to understand endophyte community assembly through an evolutionary lens. Here we collected data to investigate environmental and host effects on root endophyte assemblages in coastal Louisiana marshes. We isolated and sequenced culturable fungal endophytes from roots of three-four dominant plant species from each of three sites of varying salinity. We provide data on abundance and taxonomy of the isolated fungal taxa as well as phylogenetic diversity (mean phylogenetic distance, MPD) and phylogenetic composition (based on MPD). 
    more » « less
  4. Diverse communities of fungal endophytes reside in plant tissues, where they affect and are affected by plant physiology and ecology. For these intimate interactions to form and persist, endophytes and their host plants engage in intricate systems of communication. The conversation between fungal endophytes and plant hosts ultimately dictates endophyte community composition and function and has cascading effects on plant health and plant interactions. In this review, we synthesize our current knowledge on the mechanisms and strategies of communication used by endophytic fungi and their plant hosts. We discuss the molecular mechanisms of communication that lead to organ specificity of endophytic communities and distinguish endophytes, pathogens, and saprotrophs. We conclude by offering emerging perspectives on the relevance of plant-endophyte communication to microbial community ecology and plant health and function. 
    more » « less
  5. A total of 9347 fungal and bacterial endophytes were isolated from the roots, stem and leaves of chia plant. Roots harbored more number of fungal endophytes than either stem or leaves whereas stem supported more number of bacterial endophytes than either roots or leaves. The nutritious plant supported more of gram negative compared to gram positive bacterial endophytes. The most common bacteria isolated were Pseudomonas Bacillus, and Cocci. The fungal endophytes isolated from root, stem and leaves of the chia plant showed the presence of Penincillium, Aspergillus, Fusarium, and Macrophomina spps. Dominant fungal endophyte was Aspergillus spp. which was found in all the plant parts instigated. Roots of the plant possessed maximum nitrogen fixers followed by stem and leaves. A proportion of 55% for the bacterial endophytes isolated from the plant chia plant were able to fix nitrogen whereas 25% were able to solubilize phosphorous. The phosphate solubilization efficiency was found to be highest for the Aspergillus spp at 83% 
    more » « less