skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 17, 2026

Title: Mechanically interlocked two-dimensional polymers
Mechanical bonds arise between molecules that contain interlocked subunits, such as one macrocycle threaded through another. Within polymers, these linkages will confer distinctive mechanical properties and other emergent behaviors, but polymerizations that form mechanical bonds efficiently and use simple monomeric building blocks are rare. In this work, we introduce a solid-state polymerization in which one monomer infiltrates crystals of another to form a macrocycle and mechanical bond at each repeat unit of a two-dimensional (2D) polymer. This mechanically interlocked 2D polymer is formed as a layered solid that is readily exfoliated in common organic solvents, enabling spectroscopic characterization and atomic-resolution imaging using advanced electron microscopy techniques. The 2D mechanically interlocked polymer is easily prepared on multigram scales, which, along with its solution processibility, enables the facile fabrication of composite fibers with Ultem that exhibit enhanced stiffness and strength.  more » « less
Award ID(s):
2039380
PAR ID:
10597633
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
AAAS
Date Published:
Journal Name:
Science
Volume:
387
Issue:
6731
ISSN:
0036-8075
Page Range / eLocation ID:
264 to 269
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Mechanically interlocked polymers (MIPs), polymer architectures that incorporate the mechanical bond, have seen a dramatic growth in interest over the last decade or so. Of particular interest in these architectures are the high mobility and conformational freedom of the interlocked components, which can give rise to unique property profiles. Over the years the research advances, from the chemistry, physics, material science and engineering fields, has started to build an understanding of how incorporating mechanical bonds into a polymer structure impacts its properties. This review focuses on summarizing the state-of-the-art understanding of the structure-property relationships in these materials and an outlook toward their applications, specifically focusing on four main classes of MIPs, polyrotaxanes, slide-ring gels, daisy-chain polymers and polycatenanes. 
    more » « less
  2. Abstract The integration of mechanically interlocked molecules (MIMs) into polymeric materials has led to the development of mechanically interlocked polymers (MIPs). One class of MIPs that have gained attention in recent years are slide‐ring gels (SRGs), which are generally accessed by crosslinking rings on a main‐chain polyrotaxane. The mobility of the interlocked crosslinking moieties along the polymer backbone imparts enhanced properties onto these networks. An alternative synthetic approach to SRGs is to use a doubly threaded ring as the crosslinking moiety, yielding doubly threaded slide‐ring gel networks (dt‐SRGs). In this study, a photo‐curable ligand‐containing thread was used to assemble a series of metal‐templated pseudo[3]rotaxane crosslinkers that allow access to polymer networks that contain doubly threaded interlocked rings. The physicochemical and mechanical properties of these dt‐SRGs with varying size of the ring crosslinking moieties were investigated and compared to an entangled gel (EG) prepared by polymerizing the metal complex of the photo‐curable ligand‐containing thread, and a corresponding covalent gel (CG). Relative to the EG and CG, the dt‐SRGs exhibit enhanced swelling behavior, viscoelastic properties, and stress relaxation characteristics. In addition, the macroscopic properties of dt‐SRGs could be altered by “locking” ring mobility in the structure through remetalation, highlighting the impact of the mobility of the crosslinks. 
    more » « less
  3. Over the past 20 years, the field of polymer mechanochemistry has amassed a toolbox of mechanophores that translate mechanical energy into a variety of functional responses ranging from color change to small-molecule release. These productive chemical changes typically occur at the length scale of a few covalent bonds (Å) but require large energy inputs and strains on the micro-to-macro scale in order to achieve even low levels of mechanophore activation. The minimal activation hinders the translation of the available chemical responses into materials and device applications. The mechanophore activation challenge inspires core questions at yet another length scale of chemical control, namely: What are the molecular-scale features of a polymeric material that determine the extent of mechanophore activation? Further, how do we marry advances in the chemistry of polymer networks with the chemistry of mechanophores to create stress-responsive materials that are well suited for an intended application? In this Perspective, we speculate as to the potential match between covalent polymer mechanochemistry and recent advances in polymer network chemistry, specifically, topologically controlled networks and the hierarchical material responses enabled by multi-network architectures and mechanically interlocked polymers. Both fundamental and applied opportunities unique to the union of these two fields are discussed. 
    more » « less
  4. Although catenanes comprising two ring-shaped components can be made in large quantities by templation, the preparation of three-dimensional (3D) catenanes with cage-shaped components is still in its infancy. Here, we report the design and syntheses of two 3D catenanes by a sequence of S N 2 reactions in one pot. The resulting triply mechanically interlocked molecules were fully characterized in both the solution and solid states. Mechanistic studies have revealed that a suit[3]ane, which contains a threefold symmetric cage component as the suit and a tribromide component as the body, is formed at elevated temperatures. This suit[3]ane was identified as the key reactive intermediate for the selective formation of the two 3D catenanes which do not represent thermodynamic minima. We foresee a future in which this particular synthetic strategy guides the rational design and production of mechanically interlocked molecules under kinetic control. 
    more » « less
  5. Abstract Polymer‐grafted nanoparticles (PGNPs) are ideal additives to enhance the mechanical properties and functionality of a polymer matrix and can even potentially serve as single‐component building blocks for highly filled composites if the polymer content is kept low. The major challenge facing such syntheses is that PGNP‐based solids with short polymer brushes often have low mechanical strength and limited processability. It therefore remains difficult to form robust architectures with a variety of 3D macroscopic shapes from single‐component PGNP composites. Forming covalent bonds between cross‐linkable PGNPs is a promising route for overcoming this limitation in processability and functionality, but cross‐linking strategies often require careful blending of components or slow assembly methods. Here, a transformative aging strategy is presented that uses anhydride cross‐linking to enable facile processing of single‐component PGNP solids via thermoforming into arbitrary shapes. The use of lowTgpolymer brushes enables the production of macroscopic composites with>30 vol% homogeneously distributed filler, and aging increases stiffness by 1–2 orders of magnitude. This strategy can be adapted to a variety of polymer and nanofiller compositions and is therefore a potentially versatile approach to synthesize nanocomposites that are functional, mechanically robust, and easily processable. 
    more » « less