skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 1, 2026

Title: GWPopulation: Hardware agnostic population inference for compact binaries and beyond
Since the first direct detection of gravitational waves by the LIGO–Virgo collaboration in 2015 (B. P. Abbott et al., 2016), the size of the gravitational-wave transient catalog has grown to nearly 100 events (R. Abbott et al., 2023), with the ongoing fourth observing run more than doubling the total number. Extracting astrophysical or cosmological information from these observations is a hierarchical Bayesian inference problem. GWPopulation is designed to provide simple-to-use, robust, and extensible tools for hierarchical inference in gravitational-wave astronomy or cosmology. It has been widely adopted for gravitational-wave astronomy, including producing flagship results for the LIGO-Virgo-KAGRA collaborations (Abac et al., 2024; R. Abbott et al., 2023). While designed to work with observations of compact binary coalescences, GWPopulation may be available to a wider range of hierarchical Bayesian inference problems.  more » « less
Award ID(s):
2207758
PAR ID:
10613636
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Journal of Open Source Software
Date Published:
Journal Name:
Journal of Open Source Software
Volume:
10
Issue:
109
ISSN:
2475-9066
Page Range / eLocation ID:
7753
Subject(s) / Keyword(s):
Hierarchical Bayesian inference software gravitational waves gravitational-wave astronomy
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Improved observational constraints on the orbital parameters of the low-mass X-ray binary Scorpius X-1 were recently published in Killestein et al. In the process, errors were corrected in previous orbital ephemerides, which have been used in searches for continuous gravitational waves from Sco X-1 using data from the Advanced LIGO detectors. We present the results of a reanalysis of LIGO detector data from the third observing run of Advanced LIGO and Advanced Virgo using a model-based cross-correlation search. The corrected region of parameter space, which was not covered by previous searches, was about 1/3 as large as the region searched in the original O3 analysis, reducing the required computing time. We have confirmed that no detectable signal is present over a range of gravitational-wave frequencies from 25 to 1600 Hz, analogous to the null result of Abbott et al. Our search sensitivity is comparable to that of Abbott et al., who set upper limits corresponding, between 100 and 200 Hz, to an amplitudeh0of about 10−25when marginalized isotropically over the unknown inclination angle of the neutron star’s rotation axis, or less than 4 × 10−26assuming the optimal orientation. 
    more » « less
  2. Gravitational waves provide a unique tool for observational astronomy. While the first LIGO–Virgo catalogue of gravitational wave transients (GWTC-1) contains 11 signals from black hole and neutron star binaries, the number of observations is increasing rapidly as detector sensitivity improves. To extract information from the observed signals, it is imperative to have fast, flexible, and scalable inference techniques. In a previous paper, we introduced BILBY: a modular and user-friendly Bayesian inference library adapted to address the needs of gravitational-wave inference. In this work, we demonstrate that BILBY produces reliable results for simulated gravitational-wave signals from compact binary mergers, and verify that it accurately reproduces results reported for the 11 GWTC-1 signals. Additionally, we provide configuration and output files for all analyses to allow for easy reproduction, modification, and future use. This work establishes that BILBY is primed and ready to analyse the rapidly growing population of compact binary coalescence gravitational-wave signals. 
    more » « less
  3. Abstract Since 2015 the gravitational-wave observations of LIGO and Virgo have transformed our understanding of compact-object binaries. In the years to come, ground-based gravitational-wave observatories such as LIGO, Virgo, and their successors will increase in sensitivity, discovering thousands of stellar-mass binaries. In the 2030s, the space-based LISA will provide gravitational-wave observations of massive black holes binaries. Between the $$\sim 10$$ ∼ 10 –10 3 Hz band of ground-based observatories and the $$\sim 10^{-4}$$ ∼ 1 0 − 4 –10 − 1 Hz band of LISA lies the uncharted decihertz gravitational-wave band. We propose a Decihertz Observatory to study this frequency range, and to complement observations made by other detectors. Decihertz observatories are well suited to observation of intermediate-mass ( $$\sim 10^{2}$$ ∼ 1 0 2 –10 4 M ⊙ ) black holes; they will be able to detect stellar-mass binaries days to years before they merge, providing early warning of nearby binary neutron star mergers and measurements of the eccentricity of binary black holes, and they will enable new tests of general relativity and the Standard Model of particle physics. Here we summarise how a Decihertz Observatory could provide unique insights into how black holes form and evolve across cosmic time, improve prospects for both multimessenger astronomy and multiband gravitational-wave astronomy, and enable new probes of gravity, particle physics and cosmology. 
    more » « less
  4. Abstract Gravitational-wave observations of neutron star mergers can probe the nuclear equation of state by measuring the imprint of the neutron star’s tidal deformability on the signal. We investigate the ability of future gravitational-wave observations to produce a precise measurement of the equation of state from binary neutron star inspirals. Because measurability of the tidal effect depends on the equation of state, we explore several equations of state that span current observational constraints. We generate a population of binary neutron stars as seen by a simulated Advanced LIGO–Virgo network, as well as by a planned Cosmic Explorer observatory. We perform Bayesian inference to measure the parameters of each signal, and we combine measurements across each population to determineR1.4, the radius of a 1.4Mneutron star. We find that, with 321 signals, the LIGO–Virgo network is able to measureR1.4to better than 2% precision for all equations of state we consider; however, we also find that achieving this precision could take decades of observation, depending on the equation of state and the merger rate. On the other hand, we find that with one year of observation, Cosmic Explorer will measureR1.4to better than 0.6% precision. In both cases, we find that systematic biases, such as from an incorrect mass prior, can significantly impact measurement accuracy, and efforts will be required to mitigate these effects. 
    more » « less
  5. Abstract In recent years, there have been significant advances in multimessenger astronomy due to the discovery of the first, and so far only confirmed, gravitational wave event with a simultaneous electromagnetic (EM) counterpart, as well as improvements in numerical simulations, gravitational wave (GW) detectors, and transient astronomy. This has led to the exciting possibility of performing joint analyses of the GW and EM data, providing additional constraints on fundamental properties of the binary progenitor and merger remnant. Here, we present a new Bayesian framework that allows inference of these properties, while taking into account the systematic modeling uncertainties that arise when mapping from GW binary progenitor properties to photometric light curves. We extend the relative binning method presented in Zackay et al. to include extrinsic GW parameters for fast analysis of the GW signal. The focus of our EM framework is on light curves arising from r -process nucleosynthesis in the ejected material during and after merger, the so-called kilonova, and particularly on black hole−neutron star systems. As a case study, we examine the recent detection of GW190425, where the primary object is consistent with being either a black hole or a neutron star. We show quantitatively how improved mapping between binary progenitor and outflow properties, and/or an increase in EM data quantity and quality are required in order to break degeneracies in the fundamental source parameters. 
    more » « less