skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Halo densities and pericenter distances of the bright Milky Way satellites as a test of dark matter physics
ABSTRACT We provide new constraints on the dark matter halo density profile of Milky Way (MW) dwarf spheroidal galaxies (dSphs) using the phase-space distribution function (DF) method. After assessing the systematics of the approach against mock data from the Gaia Challenge project, we apply the DF analysis to the entire kinematic sample of well-measured MW dwarf satellites for the first time. Contrary to previous findings for some of these objects, we find that the DF analysis yields results consistent with the standard Jeans analysis. In particular, in this study we rediscover (i) a large diversity in the inner halo densities of dSphs (bracketed by Draco and Fornax), and (ii) an anticorrelation between inner halo density and pericenter distance of the bright MW satellites. Regardless of the strength of the anticorrelation, we find that the distribution of these satellites in density versus pericenter space is inconsistent with the results of the high-resolution N-body simulations that include a disc potential. Our analysis motivates further studies on the role of internal feedback and dark matter microphysics in these dSphs.  more » « less
Award ID(s):
2210283
PAR ID:
10618012
Author(s) / Creator(s):
; ;
Publisher / Repository:
Royal Astronomical Society
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
532
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
4157 to 4186
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We combine Gaia early data release 3 astrometry with accurate photometry and utilize a probabilistic mixture model to measure the systemic proper motion of 52 dwarf spheroidal (dSph) satellite galaxies of the Milky Way (MW). For the 46 dSphs with literature line-of-sight velocities we compute orbits in both a MW and a combined MW + Large Magellanic Cloud (LMC) potential and identify Car II, Car III, Hor I, Hyi I, Phx II, and Ret II as likely LMC satellites. 40% of our dSph sample has a >25% change in pericenter and/or apocenter with the MW + LMC potential. For these orbits, we use a Monte Carlo sample for the observational uncertainties for each dSph and the uncertainties in the MW and LMC potentials. We predict that Ant II, Boo III, Cra II, Gru II, and Tuc III should be tidally disrupting by comparing each dSph's average density relative to the MW density at its pericenter. dSphs with large ellipticity (CVn I, Her, Tuc V, UMa I, UMa II, UMi, Wil 1) show a preference for their orbital direction to align with their major axis even for dSphs with large pericenters. We compare the dSph radial orbital phase to subhalos in MW-likeN-body simulations and infer that there is not an excess of satellites near their pericenter. With projections of future Gaia data releases, we find that dSph's orbital precision will be limited by uncertainties in the distance and/or MW potential rather than in proper motion precision. Finally, we provide our membership catalogs to enable community follow-up. 
    more » « less
  2. ABSTRACT We use the GRUMPY galaxy formation model based on a suite of zoom-in, high-resolution, dissipationless Λ Cold Dark Matter (ΛCDM) simulations of the Milky Way (MW) sized haloes to examine total matter density within the half-mass radius of stellar distribution, ρtot(< r1/2), of satellite dwarf galaxies around the MW hosts and their mass assembly histories. We compare model results to ρtot(< r1/2) estimates for observed dwarf satellites of the Milky Way spanning their entire luminosity range. We show that observed MW dwarf satellites exhibit a trend of decreasing total matter density within a half-mass radius, ρtot(< r1/2), with increasing stellar mass. This trend is in general agreement with the trend predicted by the model. None of the observed satellites are overly dense compared to the results of our ΛCDM-based model. We also show that although the halo mass of many satellite galaxies is comparable to the halo mass of the MW progenitor at z ≳ 10, at these early epochs halos that survive as satellites to z = 0 are located many virial radii away from the MW progenitors and thus do not have a chance to merge with it. Our results show that neither the densities estimated in observed Milky Way satellites nor their mass assembly histories pose a challenge to the ΛCDM model. In fact, the broad agreement between density trends with the stellar mass of the observed and model galaxies can be considered as yet another success of the model. 
    more » « less
  3. Abstract A significant fraction of Milky Way (MW) satellites exhibit phase-space properties consistent with a coherent orbital plane. Using tailored N -body simulations of a spherical MW halo that recently captured a massive (1.8 × 10 11 M ⊙ ) LMC-like satellite, we identify the physical mechanisms that may enhance the clustering of orbital poles of objects orbiting the MW. The LMC deviates the orbital poles of MW dark matter particles from the present-day random distribution. Instead, the orbital poles of particles beyond R ≈ 50 kpc cluster near the present-day orbital pole of the LMC along a sinusoidal pattern across the sky. The density of orbital poles is enhanced near the LMC by a factor δ ρ max = 30% (50%) with respect to underdense regions and δ ρ iso = 15% (30%) relative to the isolated MW simulation (no LMC) between 50 and 150 kpc (150–300 kpc). The clustering appears after the LMC’s pericenter (≈50 Myr ago, 49 kpc) and lasts for at least 1 Gyr. Clustering occurs because of three effects: (1) the LMC shifts the velocity and position of the central density of the MW’s halo and disk; (2) the dark matter dynamical friction wake and collective response induced by the LMC change the kinematics of particles; (3) observations of particles selected within spatial planes suffer from a bias, such that measuring orbital poles in a great circle in the sky enhances the probability of their orbital poles being clustered. This scenario should be ubiquitous in hosts that recently captured a massive satellite (at least ≈1:10 mass ratio), causing the clustering of orbital poles of halo tracers. 
    more » « less
  4. ABSTRACT Self-interacting dark matter (SIDM) models offer one way to reconcile inconsistencies between observations and predictions from collisionless cold dark matter (CDM) models on dwarf-galaxy scales. In order to incorporate the effects of both baryonic and SIDM interactions, we study a suite of cosmological-baryonic simulations of Milky-Way (MW)-mass galaxies from the Feedback in Realistic Environments (FIRE-2) project where we vary the SIDM self-interaction cross-section σ/m. We compare the shape of the main dark matter (DM) halo at redshift z = 0 predicted by SIDM simulations (at σ/m = 0.1, 1, and 10 cm2 g−1) with CDM simulations using the same initial conditions. In the presence of baryonic feedback effects, we find that SIDM models do not produce the large differences in the inner structure of MW-mass galaxies predicted by SIDM-only models. However, we do find that the radius where the shape of the total mass distribution begins to differ from that of the stellar mass distribution is dependent on σ/m. This transition could potentially be used to set limits on the SIDM cross-section in the MW. 
    more » « less
  5. Abstract The large-scale morphology of Milky Way (MW)–mass dark matter halos is shaped by two key processes: filamentary accretion from the cosmic web and interactions with massive satellites. Disentangling their contributions is essential for understanding galaxy evolution and constructing accurate mass models of the MW. We analyze the time-dependent structure of MW-mass halos from zoomed cosmological-hydrodynamical simulations by decomposing their mass distribution into spherical harmonic expansions. We find that the dipole and quadrupole moments dominate the gravitational power spectrum, encoding key information about the halo’s shape and its interaction with the cosmic environment. While the dipole reflects transient perturbations from infalling satellites and damps on dynamical timescales, the quadrupole—linked to the halo’s triaxiality—is a persistent feature. We show that the quadrupole’s orientation aligns with the largest filaments, imprinting a long-lived memory on the halo’s morphology even in its inner regions (∼30 kpc). At the virial radius, the quadrupole distortion can reach 1–2 times the spherical density, highlighting the importance of environment in shaping MW-mass halos. Using multichannel singular spectrum analysis, we successfully disentangle the effects of satellite mergers and filamentary accretion on quadrupole. We find that, compared to isolated MW–LMC simulations that typically use a spherical halo, the LMC-mass satellite induces a quadrupolar response that is an order of magnitude larger in our cosmological halo. This highlights the need for models that incorporate the MW’s asymmetry and time evolution, with direct consequences for observable structures such as disk warps, the LMC-induced wake, and stellar tracers—particularly in the era of precision astrometry. 
    more » « less