Abstract Electron transfer is a fundamental process in chemistry, biology, and physics. One of the most intriguing questions concerns the realization of the transitions between nonadiabatic and adiabatic regimes of electron transfer. Using colloidal quantum dot molecules, we computationally demonstrate how the hybridization energy (electronic coupling) can be tuned by changing the neck dimensions and/or the quantum dot sizes. This provides a handle to tune the electron transfer from the incoherent nonadiabatic regime to the coherent adiabatic regime in a single system. We develop an atomistic model to account for several states and couplings to the lattice vibrations and utilize the mean-field mixed quantum-classical method to describe the charge transfer dynamics. Here, we show that charge transfer rates increase by several orders of magnitude as the system is driven to the coherent, adiabatic limit, even at elevated temperatures, and delineate the inter-dot and torsional acoustic modes that couple most strongly to the charge transfer dynamics.
more »
« less
This content will become publicly available on July 25, 2026
Electrons in Quantum Dots on Helium: From Charge Qubits to Synthetic Color Centers
Electrons trapped above the surface of helium provide a means to study many-body physics free from the randomness that comes from defects in other condensed-matter systems. Localizing an electron in an electrostatic quantum dot makes its energy spectrum discrete, with controlled level spacing. The lowest two states can act as charge qubit states. In this paper, we study how the coupling to the quantum field of capillary waves on helium—known as ripplons—affects electron dynamics. As we show, the coupling can be strong. This bounds the parameter range where electron-based charge qubits can be implemented. The constraint is different from the conventional relaxation time constraint. The electron–ripplon system in a dot is similar to a color center formed by an electron defect coupled to phonons in a solid. In contrast to solids, the coupling in the electron on helium system can be varied from strong to weak. This enables a qualitatively new approach to studying color center physics. We analyze the spectroscopy of the pertinent synthetic color centers in a broad range of the coupling strength.
more »
« less
- Award ID(s):
- 2003815
- PAR ID:
- 10618500
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Entropy
- Volume:
- 27
- Issue:
- 8
- ISSN:
- 1099-4300
- Page Range / eLocation ID:
- 787
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Both organohalide perovskites and colloidal quantum dots are attractive and promising materials for optoelectronic applications. Recent experiments have combined the two to create “quantum dot-in-perovskite” assemblies for highly efficient light emissions. In this work, we unravel photoexcitation dynamics at the interface between the perovskite and the quantum dot by means of first-principle non-adiabatic molecular dynamics simulations. We find that such assemblies adopt the type-I band structure and are free of defect states. The interfacial and the electronic structure are robust against the thermal fluctuations at 300K. The lowest excitation is predicted to be localized entirely on the quantum dot and the photoexcited charge transfer takes place in a picosecond timescale. The charge transfer dynamics of the photoexcited electron and hole exhibits a moderate asymmetry, which can be attributed to the differences in electronic coupling between the donor and the acceptor and the electron-phonon coupling. The ultrafast and balanced charge transfer dynamics endows the ‘dot-in-a-crystal’ devices with unprecedented performance, which could lead to important applications in photovoltaics, photocatalysis, and infrared light emissions.more » « less
-
In this paper, we study the localization of an electron in a binary quantum system formed by a pair of quantum dots (QDs). The traditional theoretical consideration of such systems is limited to the symmetrical case when QDs in such double quantum dot (DQD) are assumed identical in all respects. In this paper, we model the effects of breaking QD similarities in a DQD by studying two-dimensional (2D) DQDs as a double quantum well (DQW). This is done by solving the Schrödinger equation, with parameters chosen to describe an InAs/GaAs heterostructure. We calculate the energy spectrum of the electron confinement and the spectral distribution of localized/delocalized spatial states. Both symmetric and asymmetric QW shapes are considered and their effects are compared. The effects of symmetry breaking are explained within the framework of the two-level system theory. We delineate the QW weak and strong coupling cases in DQW. In particular, we show that the coherence in ideal DQW is unstable in the case of a weak QW coupling. Within the framework of the proposed approach, a charge qubit realized on a DQD is discussed and, as an example, a qubit based on an almost ideal DQD is proposed.more » « less
-
null (Ed.)Abstract Piezoelectric surface acoustic waves (SAWs) are powerful for investigating and controlling elementary and collective excitations in condensed matter. In semiconductor two-dimensional electron systems SAWs have been used to reveal the spatial and temporal structure of electronic states, produce quantized charge pumping, and transfer quantum information. In contrast to semiconductors, electrons trapped above the surface of superfluid helium form an ultra-high mobility, two-dimensional electron system home to strongly-interacting Coulomb liquid and solid states, which exhibit non-trivial spatial structure and temporal dynamics prime for SAW-based experiments. Here we report on the coupling of electrons on helium to an evanescent piezoelectric SAW. We demonstrate precision acoustoelectric transport of as little as ~0.01% of the electrons, opening the door to future quantized charge pumping experiments. We also show SAWs are a route to investigating the high-frequency dynamical response, and relaxational processes, of collective excitations of the electronic liquid and solid phases of electrons on helium.more » « less
-
Abstract The nitrogen-vacancy (NV) color center in diamond has rapidly emerged as an important solid-state system for quantum information processing. Whereas individual spin registers have been used to implement small-scale diamond quantum computing, the realization of a large-scale device requires the development of an on-chip quantum bus for transporting information between distant qubits. Here, we propose a method for coherent quantum transport of an electron and its spin state between distant NV centers. Transport is achieved by the implementation of spatial stimulated adiabatic Raman passage through the optical control of the NV center charge states and the confined conduction states of a diamond nanostructure. Our models show that, for two NV centers in a diamond nanowire, high-fidelity transport can be achieved over distances of order hundreds of nanometers in timescales of order hundreds of nanoseconds. Spatial adiabatic passage is therefore a promising option for realizing an on-chip spin quantum bus.more » « less
An official website of the United States government
