Abstract The Riemann problem for the discrete conservation law is classified using Whitham modulation theory, a quasi‐continuum approximation, and numerical simulations. A surprisingly elaborate set of solutions to this simple discrete regularization of the inviscid Burgers' equation is obtained. In addition to discrete analogs of well‐known dispersive hydrodynamic solutions—rarefaction waves (RWs) and dispersive shock waves (DSWs)—additional unsteady solution families and finite‐time blowup are observed. Two solution types exhibit no known conservative continuum correlates: (i) a counterpropagating DSW and RW solution separated by a symmetric, stationary shock and (ii) an unsteady shock emitting two counterpropagating periodic wavetrains with the same frequency connected to a partial DSW or an RW. Another class of solutions called traveling DSWs, (iii), consists of a partial DSW connected to a traveling wave comprised of a periodic wavetrain with a rapid transition to a constant. Portions of solutions (ii) and (iii) are interpreted as shock solutions of the Whitham modulation equations.
more »
« less
A regularized continuum model for travelling waves and dispersive shocks of the granular chain
Abstract In this paper, we focus on a discrete physical model describing granular crystals, whose equations of motion can be described by a system of differential difference equations. After revisiting earlier continuum approximations, we propose a regularized continuum model variant to approximate the discrete granular crystal model through a suitable partial differential equation. We then compute, both analytically and numerically, its travelling wave and periodic travelling wave solutions, in addition to its conservation laws. Next, using the periodic solutions, we describe quantitatively various features of the dispersive shock wave (DSW) by applying Whitham modulation theory and the DSW fitting method. Finally, we perform several sets of systematic numerical simulations to compare the corresponding DSW results with the theoretical predictions and illustrate that the continuum model provides a good approximation of the underlying discrete one.
more »
« less
- PAR ID:
- 10634583
- Publisher / Repository:
- Cambridge University Press
- Date Published:
- Journal Name:
- Journal of Nonlinear Waves
- Volume:
- 1
- ISSN:
- 3033-4268
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present a numerical study of spatially quasi-periodic travelling waves on the surface of an ideal fluid of infinite depth. This is a generalization of the classic Wilton ripple problem to the case when the ratio of wavenumbers satisfying the dispersion relation is irrational. We propose a conformal mapping formulation of the water wave equations that employs a quasi-periodic variant of the Hilbert transform to compute the normal velocity of the fluid from its velocity potential on the free surface. We develop a Fourier pseudo-spectral discretization of the travelling water wave equations in which one-dimensional quasi-periodic functions are represented by two-dimensional periodic functions on the torus. This leads to an overdetermined nonlinear least-squares problem that we solve using a variant of the Levenberg–Marquardt method. We investigate various properties of quasi-periodic travelling waves, including Fourier resonances, time evolution in conformal space on the torus, asymmetric wave crests, capillary wave patterns that change from one gravity wave trough to the next without repeating and the dependence of wave speed and surface tension on the amplitude parameters that describe a two-parameter family of waves.more » « less
-
null (Ed.)In this work, we study the nonlinear travelling waves in density stratified fluids with piecewise-linear shear currents. Beginning with the formulation of the water-wave problem due to Ablowitz et al. ( J. Fluid Mech. , vol. 562, 2006, pp. 313–343), we extend the work of Ashton & Fokas ( J. Fluid Mech. , vol. 689, 2011, pp. 129–148) and Haut & Ablowitz ( J. Fluid Mech. , vol. 631, 2009, pp. 375–396) to examine the interface between two fluids of differing densities and varying linear shear. We derive a systems of equations depending only on variables at the interface, and numerically solve for periodic travelling wave solutions using numerical continuation. Here, we consider only branches which bifurcate from solutions where there is no slip in the tangential velocity at the interface for the trivial flow. The spectral stability of these solutions is then determined using a numerical Fourier–Floquet technique. We find that the strength of the linear shear in each fluid impacts the stability of the corresponding travelling wave solutions. Specifically, opposing shears may amplify or suppress instabilities.more » « less
-
A class of two-fast, one-slow multiple timescale dynamical systems is considered that contains the system of ordinary differential equations obtained from seeking travelling-wave solutions to the FitzHugh-Nagumo equations in one space dimension. The question addressed is the mechanism by which a small-amplitude periodic orbit, created in a Hopf bifurcation, undergoes rapid amplitude growth in a small parameter interval, akin to a canard explosion. The presence of a saddle-focus structure around the slow manifold implies that a single periodic orbit undergoes a sequence of folds as the amplitude grows. An analysis is performed under some general hypotheses using a combination ideas from the theory of canard explosion and Shilnikov analysis. An asymptotic formula is obtained for the dependence of the parameter location of the folds on the singular parameter and parameters that control the saddle focus eigenvalues. The analysis is shown to agree with numerical results both for a synthetic normal-form example and the FitzHugh-Nagumo system.more » « less
-
Abstract We derive the Whitham modulation equations for the Zakharov–Kuznetsov equation via a multiple scales expansion and averaging two conservation laws over one oscillation period of its periodic traveling wave solutions. We then use the Whitham modulation equations to study the transverse stability of the periodic traveling wave solutions. We find that all periodic solutions traveling along the first spatial coordinate are linearly unstable with respect to purely transversal perturbations, and we obtain an explicit expression for the growth rate of perturbations in the long wave limit. We validate these predictions by linearizing the equation around its periodic solutions and solving the resulting eigenvalue problem numerically. We also calculate the growth rate of the solitary waves analytically. The predictions of Whitham modulation theory are in excellent agreement with both of these approaches. Finally, we generalize the stability analysis to periodic waves traveling in arbitrary directions and to perturbations that are not purely transversal, and we determine the resulting domains of stability and instability.more » « less
An official website of the United States government

