skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: LSTM-Based Proactive Congestion Management for Internet of Vehicle Networks
Vehicle-to-everything (V2X) networks support a variety of safety, entertainment, and commercial applications. This is realized by applying the principles of the Internet of Vehicles (IoV) to facilitate connectivity among vehicles and between vehicles and roadside units (RSUs). Network congestion management is essential for IoVs and it represents a significant concern due to its impact on improving the efficiency of transportation systems and providing reliable communication among vehicles for the timely delivery of safety-critical packets. This paper introduces a framework for proactive congestion management for IoV networks. We generate congestion scenarios and a data set to predict the congestion using LSTM. We present the framework and the packet congestion dataset. Simulation results using SUMO with NS3 demonstrate the effectiveness of the framework for forecasting IoV network congestion and clustering/prioritizing packets employing recurrent neural networks.  more » « less
Award ID(s):
2120442
PAR ID:
10639043
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Vehicular Technology Conference
ISSN:
2577-2465
ISBN:
979-8-3315-1778-6
Page Range / eLocation ID:
1 to 6
Subject(s) / Keyword(s):
V2X IoV Safety Congestion Management Machine Learning NS3 SUMO LSTM
Format(s):
Medium: X
Location:
Washington, DC, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Data falsification attack in Vehicular Ad hoc Networks (VANET) for the Internet of Vehicles (IoV) is achieved by corrupting the data exchanged between nodes with false information. Data is the most valuable asset these days from which many analyses and results can be drawn out. But the privacy concern raised by users has become the greatest hindrance in performing data analysis. In IoV, misbehavior detection can be performed by creating a machine learning model from basic safety message (BSM) dataset of vehicles. We propose a privacy-preserving misbehavior detecting system for IoV using Federated Machine Learning. Vehicles in VANET for IoV are given the initial dull model to locally train using their own local data. On doing this we get a collective smart model that can classify Position Falsification attack in VANET using the data generated by each vehicle. All this is done without actually sharing the data with any third party to perform analysis. In this paper, we compare the performance of the attack detection model trained by using a federated and central approach. This training method trains the model on a different kind of position falsification attack by using local BSM data generated on each vehicle. 
    more » « less
  2. null (Ed.)
    Cities have circumvented privacy norms and deployed sensors to track vehicles via toll transponders (like E-Zpass tags). The ethical problems regarding these practices have been highlighted by various privacy advocacy groups. The industry however, has yet to implement a standard privacy protection regime to protect users’ data. Further, existing risk management models do not adequately address user-controlled data sharing requirements. In this paper, we consider the challenges of protecting private data in the Internet of Vehicles (IoV) and mobile edge networks. Specifically, we present a privacy risk reduction model for electronic toll transponder data. We seek to preserve driver privacy while contributing to intelligent transportation infrastructure congestion automation schemes. We thus propose TollsOnly, a fully homomorphic encryption protocol. TollsOnly is expected to be a post-quantum privacy preservation scheme. It enables users to share specific data with smart cities via blockchain technology. TollsOnly protects driver privacy in compliance with the European General Data Protection Regulation (GDPR) and the California Consumer Privacy Act. 
    more » « less
  3. null (Ed.)
    Internet of Vehicles (IoV) in 5G is regarded as a backbone for intelligent transportation system in smart city, where vehicles are expected to communicate with drivers, with road-side wireless infrastructure, with other vehicles, with traffic signals and different city infrastructure using vehicle-to-vehicle (V2V) and/or vehicle-to-infrastructure (V2I) communications. In IoV, the network topology changes based on drivers' destination, intent or vehicles' movements and road structure on which the vehicles travel. In IoV, vehicles are assumed to be equipped with computing devices to process data, storage devices to store data and communication devices to communicate with other vehicles or with roadside infrastructure (RSI). It is vital to authenticate data in IoV to make sure that legitimate data is being propagated in IoV. Thus, security stands as a vital factor in IoV. The existing literature contains some limitations for robust security in IoV such as high delay introduced by security algorithms, security without privacy, unreliable security and reduced overall communication efficiency. To address these issues, this paper proposes the Elliptic Curve Cryptography (ECC) based Ant Colony Optimization Ad hoc On-demand Distance Vector (ACO-AODV) routing protocol which avoids suspicious vehicles during message dissemination in IoV. Specifically, our proposed protocol comprises three components: i) certificate authority (CA) which maps vehicle's publicly available info such as number plates with cryptographic keys using ECC; ii) malicious vehicle (MV) detection algorithm which works based on trust level calculated using status message interactions; and iii) secure optimal path selection in an adaptive manner based on the intent of communications using ACO-AODV that avoids malicious vehicles. Experimental results illustrate that the proposed approach provides better results than the existing approaches. 
    more » « less
  4. Autonomous vehicles (AV) hold great potential to increase road safety, reduce traffic congestion, and improve mobility systems. However, the deployment of AVs introduces new liability challenges when they are involved in car accidents. A new legal framework should be developed to tackle such a challenge. This paper proposes a legal framework, incorporating liability rules to rear-end crashes in mixed-traffic platoons with AVs and human-propelled vehicles (HV). We leverage a matrix game approach to understand interactions among players whose utility captures crash loss for drivers according to liability rules. We investigate how liability rules may impact the game equilibrium between vehicles and whether human drivers’ moral hazards arise if liability is not designed properly. We find that compared to the no-fault liability rule, contributory and comparative rules make road users have incentives to execute a smaller reaction time to improve road safety. There exists moral hazards for human drivers when risk-averse AV players are in the car platoon. 
    more » « less
  5. Internet of Things has become a predominant phenomenon in every sphere of smart life. Connected Cars and Vehicular Internet of Things, which involves communication and data exchange between vehicles, traffic infrastructure or other entities are pivotal to realize the vision of smart city and intelligent transportation. Vehicular Cloud offers a promising architecture wherein storage and processing capabilities of smart objects are utilized to provide on-the-fly fog platform. Researchers have demonstrated vulnerabilities in this emerging vehicular IoT ecosystem, where data has been stolen from critical sensors and smart vehicles controlled remotely. Security and privacy is important in Internet of Vehicles (IoV) where access to electronic control units, applications and data in connected cars should only be authorized to legitimate users, sensors or vehicles. In this paper, we propose an authorization framework to secure this dynamic system where interactions among entities is not pre-defined. We provide an extended access control oriented (E-ACO) architecture relevant to IoV and discuss the need of vehicular clouds in this time and location sensitive environment. We outline approaches to different access control models which can be enforced at various layers of E-ACO architecture and in the authorization framework. Finally, we discuss use cases to illustrate access control requirements in our vision of cloud assisted connected cars and vehicular IoT, and discuss possible research directions. 
    more » « less