Abstract We report threshold voltage (VTH) control in ultrawide bandgap Al0.4Ga0.6N-channel metal oxide semiconductor heterostructure field-effect transistors using a high-temperature (300 °C) anneal of the high-kZrO2gate-insulator. Annealing switched the polarity of the fixed charges at the ZrO2/AlGaN interface from +5.5 × 1013cm−2to −4.2 × 1013cm−2, pinningVTHat ∼ (−12 V), reducing gate leakage by ∼103, and improving subthreshold swing 2× (116 mV decade−1). It also enabled the gate to repeatedly withstand voltages from −40 to +18 V, allowing the channel to be overdriven doubling the peak currents to ∼0.5 A mm−1. 
                        more » 
                        « less   
                    
                            
                            Impacts of Device Geometry and Layout on Temperature Profile during Large‐Area Photonic Curing
                        
                    
    
            Photonic curing is a large‐area, high‐throughput thermal processing technique that uses high‐intensity pulsed light to selectively cure thin films on thermally sensitive substrates. This study employs 3‐dimensional (3D) simulation to show, for the first time, that gate geometry significantly impacts peak curing temperature during photonic curing. The simulation results are experimentally validated by photonically curing solution‐processed indium zinc oxide for thin‐film transistors with different bottom gate geometries and comparing their performance to thermally annealed control devices. Under the same photonic curing pulse, for a fixed aspect ratio, peak photonic curing temperature increases with larger gate area, while for a fixed area, peak photonic curing temperature decreases with increasing aspect ratio. For different gate areas and aspect ratios, the simulated peak photonic curing temperature varies from ≈200 to 450 °C, which strongly impacts metal‐hydroxide to metal‐oxide conversion in sol–gels. Thus, the subsequent transistor performance is strongly influenced by the gate geometry. For example, for increasing gate area with fixed aspect ratio of 1, the average mobility increases from 1.61 to 12.52 cm2 V−1 s−1, while the threshold voltage decreases from 2.14 to −5.68 V. Thus, this study provides valuable insights for adopting 3D simulation to design transistors for complex large‐area electronics using photonic curing. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10640255
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Engineering Materials
- Volume:
- 27
- Issue:
- 12
- ISSN:
- 1438-1656
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract New deposition techniques for amorphous oxide semiconductors compatible with silicon back end of line manufacturing are needed for 3D monolithic integration of thin‐film electronics. Here, three atomic layer deposition (ALD) processes are compared for the fabrication of amorphous zinc tin oxide (ZTO) channels in bottom‐gate, top‐contact n‐channel transistors. As‐deposited ZTO films, made by ALD at 150–200 °C, exhibit semiconducting, enhancement‐mode behavior with electron mobility as high as 13 cm2V−1s−1, due to a low density of oxygen‐related defects. ZTO deposited at 200 °C using a hybrid thermal‐plasma ALD process with an optimal tin composition of 21%, post‐annealed at 400 °C, shows excellent performance with a record high mobility of 22.1 cm2V–1s–1and a subthreshold slope of 0.29 V dec–1. Increasing the deposition temperature and performing post‐deposition anneals at 300–500 °C lead to an increased density of the X‐ray amorphous ZTO film, improving its electrical properties. By optimizing the ZTO active layer thickness and using a high‐kgate insulator (ALD Al2O3), the transistor switching voltage is lowered, enabling electrical compatibility with silicon integrated circuits. This work opens the possibility of monolithic integration of ALD ZTO‐based thin‐film electronics with silicon integrated circuits or onto large‐area flexible substrates.more » « less
- 
            Abstract In this work, TiO2thin films deposited by the atomic layer deposition (ALD) method were treated with a special N2O plasma surface treatment and used as the gate dielectric for AlGaN/GaN metal insulator semiconductor high electron mobility transistors (MISHEMTs). The N2O plasma surface treatment effectively reduces defects in the oxide during low-temperature ALD growth. In addition, it allows oxygen atoms to diffuse into the device cap layer to increase the barrier height and thus reduce the gate leakage current. These TiO2films exhibit a dielectric constant of 54.8 and a two-terminal current of 1.96 × 10−10A mm−1in 2μm distance. When applied as the gate dielectric, the AlGaN/GaN MISHEMT with a 2μm-gate-length shows a high on/off ratio of 2.59 × 108and a low subthreshold slope (SS) of 84 mV dec−1among all GaN MISHEMTs using TiO2as the gate dielectric. This work provides a feasible way to significantly improve the TiO2film electrical property for gate dielectrics, and it suggests that the developed TiO2dielectric is a promising high-κgate oxide and a potential passivation layer for GaN-based MISHEMTs, which can be further extended to other transistors.more » « less
- 
            A gate-tunable plasmonic optical filter incorporating a sub- wavelength patterned metal–insulator–metal metasurface heterostructure is proposed. An additional thin transparent conducting oxide (TCO) layer is embedded in the insulator layer to form a double metal–oxide-semiconductor configu- ration. Heavily n-doped indium tin oxide (ITO) is em- ployed as the TCO material, whose optical property can be electrically tuned by the formation of a thin active ep- silon-near-zero layer at the ITO–oxide interfaces. Full-wave electromagnetic simulations show that amplitude modula- tion and shift of transmission peak are achievable with 3–5 V applied bias, depending on the application. Moreover, the modulation strength and transmission peak shift increase with a thinner ITO layer. This work is an essential step toward a realization of next-generation compact photonic/ plasmonic integrated devices.more » « less
- 
            Abstract As known, n‐type inorganic semiconductor nanoparticles such as zinc oxide nanoparticles have been explored in various sensing applications, which demand high‐density electronic elements placement for rapid operation. Herein, high‐resolution designs of conductive channels of noble metal‐doped zinc oxide nanoparticles is demonstrated using an engraving transfer printing process and silver metal doping approach. Such thin‐film transistors with reduced feature size to 2 µm fabricated exhibited significantly enhanced electron mobility up 3.46 × 10−2cm2V−1s−1and light sensitivity. Furthermore, the integration of this micropatterning technology and metal doping in thin‐film transistors is utilized for control of current–voltage characteristics under the ultraviolet radiation with high sensitivity. It is suggested that this approach to design of doped inorganic nanoparticle channels paves the way for high‐density thin‐film transistors suitable for optoelectronic circuit, UV photodetectors and neuromorphic computing systems.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
