Abstract Smart windows are energy‐efficient windows whose optical transparency can be switched between highly transparent and opaque states in response to incident solar illumination. Transparent and conductive metal nanomesh (NM) films are promising candidates for thermochromic smart windows due to their excellent thermal conductivity, high optical transparency at near infrared wavelengths, and outstanding stability. In this study, ZnO/Au/Al2O3NM films with periodicities of 200 and 370 nm are reported. The ZnO/Au/Al2O3NM film with a 370 nm periodicity exhibits a transmittance over 90% at 550 nm and sheet resistance lower than 20 Ω sq−1. Based on a standard figure of merit, this structure outperforms current state‐of‐the‐art NM films. Here, the integration of ZnO/Au/Al2O3NM films into a thermochromic perovskite smart window is also demonstrated. The transparency of the smart window structure is manipulated by transient resistive heating to trigger the thermochromic transition to the opaque state, which can be then maintained solely by 1‐sun, AM 1.5 G illumination. This climate‐adaptive, low power‐activated, and fast‐switching smart window structure opens new pathways toward its practical application in the real world. 
                        more » 
                        « less   
                    
                            
                            Assessing the Performance of a Thermoresponsive Liquid‐Based Smart Windows for Building Thermal Regulation through Outdoor Experimentation and Computational Modeling
                        
                    
    
            Abstract Smart windows have the potential to respond dynamically and passively to external stimuli, controlling the amount of light passing through the window. When a smart window switches from a clear to a translucent state, energy flow through the window is partially attenuated, allowing a room to cool down passively, thereby reducing the energy and fossil fuel consumption for air conditioning. The smart window demonstrated here consists of a thermoresponsive liquid consisting of Tergitol 15‐S‐7, which can dynamically and passively switch the window's transmittance when a temperature of 39 °C is reached. It is also demonstrated how the transition temperature can be lowered by adding salts. Outdoor experiments in realistic environments show that the temperature of a model house built with a thermo‐responsive window can achieve an indoor temperature of 7 °C less than a control house with an ordinary window. This study quantifies the energy savings possible using such windows at the building scale for cooling and heating in different climates and times of the year. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1944323
- PAR ID:
- 10640760
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Sustainable Systems
- Volume:
- 8
- Issue:
- 9
- ISSN:
- 2366-7486
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The development of smart windows could enhance the functionality of the large glass facades found in modern buildings around the globe. While these facades offer occupants views and natural light, the poor insulating qualities of glass cut against the desire for more efficient use of energy resources. In this perspective article, we explore recent developments for next-generation smart window technologies that can offer improved energy management through dynamic color switching, reducing heating and cooling loads, while also generating electricity through the photovoltaic effect. Approaches with chromogenic organic dyes and halide perovskite semiconductors have been developed for switchable photovoltaic windows, but each of these comes with unique challenges. These approaches are briefly discussed and evaluated with an eye to their future prospects. We hope that this perspective will spur other researchers as they think about the various materials and chemical design challenges associated with color switchable photovoltaic windows. Perhaps these initial demonstrations and research ideas can then become marketable products that efficiently use space to improve occupant comfort and reduce the energy demand of the built environment.more » « less
- 
            null (Ed.)Single-pane windows still account for a large percentage of US building energy consumption. In this paper, we introduced a new solution incorporating the photothermal effect of metallic nanoparticles(Fe3O4@Cu2−xS) into glazing structures to utilize solar infrared and then enhance the window’s thermal performance in winter. Such spectrally selective characteristics of the designed photothermal films were obtained from lab measurements and then integrated into a thermodynamic analytical model. Subsequently, we examined the thermal and optical behaviors of the photothermal single-pane window and compared its overall energy performance with the conventional low-e coated single-pane window, in which typical window properties, dimensions, winter boundary conditions, and solar irradiance were adopted. The numerical analysis results demonstrated that the photothermal window systems could yield 20.4% energy savings relative to the conventional low-e coated windows. This research paves an underlying thermodynamic mechanism for understanding such a nanoscale phenomenon at the architectural scale. From the implementation perspective, the designed photothermal film can be added into the existing single-pane windows for energy-efficient retrofitting purposes.more » « less
- 
            Abstract Manipulating light is an important area of optical research and development. To that end, tunable dichroic devices in which the reflectivity at differing wavelengths can be adjusted, are particularly valuable. This work is motivated by recent studies of the optical properties of chiral ferroelectric nematic liquid crystals (FNLCs). Here electro‐optical studies are presented on two room temperature, FNLC materials that demonstrate electrically tunable reflectivity when subject to a field below 0.2 V µm−1. Moreover, under appropriate conditions, the reflectivity can also be electrically (and reversibly) tuned (without change of color) from 0% to 40%. Reversible, low voltage tunable mirrors, having miniscule power consumption and operable around ambient temperature are expected to be useful in diverse applications ranging from energy‐saving, smart windows to virtual reality interfaces.more » « less
- 
            Abstract Solar near-infrared (NIR) selective glazing systems have been proposed by incorporating photothermal effects (PTE) of a nanoparticle film into building windows. From an energy efficiency perspective, the nanoscale PTE forms unique inward-flowing heat by heating up the window interior surface temperature under solar near-infrared, significantly improving the window thermal performance. Also, the PTE-driven solar heat gains are dynamic upon solar radiation and weather conditions. However, the PTE on annual building energy use has not been investigated thoroughly, due to the lack of an accurate and appropriate energy simulation method. In this study, we used the EnergyPlus energy management system to develop a parametric energy model and simulation approach in which a solar-temperature-dependent thermal model was embedded into the parametric energy simulation workflow. Applying this method, we examined the solar near-infrared-dependent PTE-induced thermal performances of glazing systems and their effects on annual heating energy use in representative cold climates (i.e., Zones 4, 5, and 6). The results show that the dynamic model considering the PTE demonstrated more heating energy savings, up to 11.64% in cold climates, as opposed to the baseline model that ignored the PTE. This work presents a method to model and simulate the dynamic thermal performance of windows with PTE.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
