Assessment of the global budget of the greenhouse gas nitrous oxide ( O) is limited by poor knowledge of the oceanic O flux to the atmosphere, of which the magnitude, spatial distribution, and temporal variability remain highly uncertain. Here, we reconstruct climatological O emissions from the ocean by training a supervised learning algorithm with over 158,000 O measurements from the surface ocean—the largest synthesis to date. The reconstruction captures observed latitudinal gradients and coastal hot spots of O flux and reveals a vigorous global seasonal cycle. We estimate an annual mean O flux of 4.2 ± 1.0 Tg N , 64% of which occurs in the tropics, and 20% in coastal upwelling systems that occupy less than 3% of the ocean area. This O flux ranges from a low of 3.3 ± 1.3 Tg N in the boreal spring to a high of 5.5 ± 2.0 Tg N in the boreal summer. Much of the seasonal variations in global O emissions can be traced to seasonal upwelling in the tropical ocean and winter mixing in the Southern Ocean. The dominant contribution to seasonality by productive, low-oxygen tropical upwelling systems (>75%) suggests a sensitivity of the global O flux to El Niño–Southern Oscillation and anthropogenic stratification of the low latitude ocean. This ocean flux estimate is consistent with the range adopted by the Intergovernmental Panel on Climate Change, but reduces its uncertainty by more than fivefold, enabling more precise determination of other terms in the atmospheric O budget.
more »
« less
The configurational length scale in the self-assembly and modulation of higher-order transient protein structures
Membrane protein homo-oligomers named higher-order transient structures (HOTS) are formed through cohesive self-interactions in the range of a few . The small magnitude of these interactions underlies the rapid reversibility of HOTS on the timescale of membrane signaling processes, permitting the dynamic modulation of signals. At the same time, weak interactions present an apparent paradox: HOTS should form only if the concentration of a particular protein is sufficiently high to produce oligomerization by mass action. And yet, HOTS are observed experimentally with membrane proteins present in cell membranes at concentrations of only a few per . In this study, we employ principles of statistical thermodynamics to explain how cells can alter the configurational entropy of the oligomerization reaction, thereby achieving HOTS formation at low concentrations of the protein in the membrane. We propose that this modification of the configurational entropy, a process we call configurational length scaling, is an important aspect of HOTS formation in cell membranes and possibly other cellular compartments.
more »
« less
- Award ID(s):
- 2051681
- PAR ID:
- 10648362
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 122
- Issue:
- 47
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Wurtzite ferroelectrics are attractive for microelectronics applications due to their chemical and structural compatibility with wurtzite semiconductors, such as and . However, the leakage current in epitaxial stacks reported to date should be reduced for reliable device operation. Here, we demonstrate low leakage current in epitaxial films on with well-saturated ferroelectric hysteresis loops that are orders of magnitude lower (i.e., 0.07 A ) than previously reported films (1–19 A ) having similar or better structural characteristics. We also show that, for these high-quality epitaxial films, structural quality (edge and screw dislocations), as measured by diffraction techniques, is not the dominant contributor to leakage. Instead, the small leakage in our films is limited by thermionic emission across the interfaces, which is distinct from the large leakage due to trap-mediated bulk transport in the previously reported films. To support this conclusion, we show that on lattice-matched buffers with improved structural characteristics but higher interface roughness exhibit increased leakage characteristics. This demonstration of low leakage current in heteroepitaxial films and understanding of the importance of interface barrier and surface roughness can guide further efforts toward improving the reliability of wurtzite ferroelectric devices. Published by the American Physical Society2025more » « less
-
Abstract Polyatomic molecules have been identified as sensitive probes of charge-parity violating and parity violating physics beyond the Standard Model (BSM). For example, many linear triatomic molecules are both laser-coolable and have parity doublets in the ground electronic state arising from the bending vibration, both features that can greatly aid BSM searches. Understanding the state is a crucial prerequisite to precision measurements with linear polyatomic molecules. Here, we characterize the fundamental bending vibration of YbOH using high-resolution optical spectroscopy on the nominally forbidden transition at 588 nm. We assign 39 transitions originating from the lowest rotational levels of the state, and accurately model the state’s structure with an effective Hamiltonian using best-fit parameters. Additionally, we perform Stark and Zeeman spectroscopy on the state and fit the molecule-frame dipole moment to Dand the effective electrong-factor to . Further, we use an empirical model to explain observed anomalous line intensities in terms of interference from spin–orbit and vibronic perturbations in the excited state. Our work is an essential step toward searches for BSM physics in YbOH and other linear polyatomic molecules.more » « less
-
Abstract The formation and evolution of post-solitons has been discussed for quite some time both analytically and through the use of particle-in-cell (PIC) codes. It is however only recently that they have been directly observed in laser-plasma experiments. Relativistic electromagnetic (EM) solitons are localised structures that can occur in collisionless plasmas. They consist of a low-frequency EM wave trapped in a low electron number-density cavity surrounded by a shell with a higher electron number-density. Here we describe the results of an experiment in which a 100 TW Ti:sapphire laser (30 fs, 800 nm) irradiates a TMPTA foam target with a focused intensity . A third harmonic ( nm) probe is employed to diagnose plasma motion for 25 ps after the main pulse interaction via Doppler-Spectroscopy. Both radiation-hydrodynamics and 2D PIC simulations are performed to aid in the interpretation of the experimental results. We show that the rapid motion of the probe critical-surface observed in the experiment might be a signature of post-soliton wall motion.more » « less
-
We combine synchrotron-based infrared absorption and Raman scattering spectroscopies with diamond anvil cell techniques and first-principles calculations to explore the properties of hafnia under compression. We find that pressure drives HfO :7%Y from the mixed monoclinic ( ) antipolar orthorhombic ( ) phase to pure antipolar orthorhombic ( ) phase at approximately 6.3 GPa. This transformation is irreversible, meaning that upon release, the material is kinetically trapped in the metastable state at 300 K. Compression also drives polar orthorhombic ( ) hafnia into the tetragonal ( ) phase, although the latter is not metastable upon release. These results are unified by an analysis of the energy landscape. The fact that pressure allows us to stabilize targeted metastable structures with less Y stabilizer is important to preserving the flat phonon band physics of pure HfO .more » « less
An official website of the United States government
