skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 1, 2026

Title: A Construction of a 3/2‐Tough Plane Triangulation With No 2‐Factor
ABSTRACT In 1956, Tutte proved the celebrated theorem that every 4‐connected planar graph is Hamiltonian. This result implies that every more than ‐tough planar graph on at least three vertices is Hamiltonian and so has a 2‐factor. Owens in 1999 constructed non‐Hamiltonian maximal planar graphs of toughness arbitrarily close to and asked whether there exists a maximal non‐Hamiltonian planar graph of toughness exactly . In fact, the graphs Owens constructed do not even contain a 2‐factor. Thus the toughness of exactly is the only case left in asking the existence of 2‐factors in tough planar graphs. This question was also asked by Bauer, Broersma, and Schmeichel in a survey. In this paper, we close this gap by constructing a maximal ‐tough plane graph with no 2‐factor, answering the question asked by Owens as well as by Bauer, Broersma, and Schmeichel.  more » « less
Award ID(s):
2345869
PAR ID:
10648745
Author(s) / Creator(s):
 
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Journal of Graph Theory
Volume:
109
Issue:
1
ISSN:
0364-9024
Page Range / eLocation ID:
5 to 18
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Let $$G$$ be a $$t$$-tough graph on $$n\ge 3$$ vertices for some $t>0$. It was shown by Bauer et al. in 1995 that if the minimum degree of $$G$$ is greater than $$\frac{n}{t+1}-1$$, then $$G$$ is hamiltonian. In terms of Ore-type hamiltonicity conditions, the problem was only studied when $$t$$ is between 1 and 2, and recently the second author proved a general result. The result states that if the degree sum of any two nonadjacent vertices of $$G$$ is greater than $$\frac{2n}{t+1}+t-2$$, then $$G$$ is hamiltonian. It was conjectured in the same paper that the $+t$ in the bound $$\frac{2n}{t+1}+t-2$$ can be removed. Here we confirm the conjecture. The result generalizes the result by Bauer, Broersma, van den Heuvel, and Veldman. Furthermore, we characterize all $$t$$-tough graphs $$G$$ on $$n\ge 3$$ vertices for which $$\sigma_2(G) = \frac{2n}{t+1}-2$$ but $$G$$ is non-hamiltonian. 
    more » « less
  2. The 2-blowup of a graph is obtained by replacing each vertex with two non-adjacent copies; a graph is biplanar if it is the union of two planar graphs. We disprove a conjecture of Gethner that 2-blowups of planar graphs are biplanar: iterated Kleetopes are counterexamples. Additionally, we construct biplanar drawings of 2-blowups of planar graphs whose duals have two-path induced path partitions, and drawings with split thickness two of 2-blowups of 3-chromatic planar graphs, and of graphs that can be decomposed into a Hamiltonian path and a dual Hamiltonian path. 
    more » « less
  3. null (Ed.)
    Every finite graph admits a simple (topological) drawing, that is, a drawing where every pair of edges intersects in at most one point. However, in combination with other restrictions simple drawings do not universally exist. For instance, k-planar graphs are those graphs that can be drawn so that every edge has at most k crossings (i.e., they admit a k-plane drawing). It is known that for k≤3 , every k-planar graph admits a k-plane simple drawing. But for k≥4 , there exist k-planar graphs that do not admit a k-plane simple drawing. Answering a question by Schaefer, we show that there exists a function Open image in new window such that every k-planar graph admits an f(k)-plane simple drawing, for all Open image in new window. Note that the function f depends on k only and is independent of the size of the graph. Furthermore, we develop an algorithm to show that every 4-planar graph admits an 8-plane simple drawing. 
    more » « less
  4. Abstract In this paper we show that every non-cycle finite transitive directed graph has a Cuntz–Krieger family whose WOT-closed algebra is $$B(\mathcal {H})$$ . This is accomplished through a new construction that reduces this problem to in-degree 2-regular graphs, which is then treated by applying the periodic Road Colouring Theorem of Béal and Perrin. As a consequence we show that finite disjoint unions of finite transitive directed graphs are exactly those finite graphs which admit self-adjoint free semigroupoid algebras. 
    more » « less
  5. Extremal combinatorics often deals with problems of maximizing a specific quantity related to substructures in large discrete structures. The first question of this kind that comes to one's mind is perhaps determining the maximum possible number of induced subgraphs isomorphic to a fixed graph $$H$$ in an $$n$$-vertex graph. The asymptotic behavior of this number is captured by the limit of the ratio of the maximum number of induced subgraphs isomorphic to $$H$$ and the number of all subgraphs with the same number vertices as $$H$$; this quantity is known as the _inducibility_ of $$H$$. More generally, one can define the inducibility of a family of graphs in the analogous way.Among all graphs with $$k$$ vertices, the only two graphs with inducibility equal to one are the empty graph and the complete graph. However, how large can the inducibility of other graphs with $$k$$ vertices be? Fix $$k$$, consider a graph with $$n$$ vertices join each pair of vertices independently by an edge with probability $$\binom{k}{2}^{-1}$$. The expected number of $$k$$-vertex induced subgraphs with exactly one edge is $$e^{-1}+o(1)$$. So, the inducibility of large graphs with a single edge is at least $$e^{-1}+o(1)$$. This article establishes that this bound is the best possible in the following stronger form, which proves a conjecture of Alon, Hefetz, Krivelevich and Tyomkyn: the inducibility of the family of $$k$$-vertex graphs with exactly $$l$$ edges where $$0<\binom{k}{2}$$ is at most $$e^{-1}+o(1)$$. The example above shows that this is tight for $l=1$ and it can be also shown to be tight for $l=k-1$. The conjecture was known to be true in the regime where $$l$$ is superlinearly bounded away from $$0$$ and $$\binom{k}{2}$$, for which the sum of the inducibilities goes to zero, and also in the regime where $$l$$ is bounded away from $$0$$ and $$\binom{k}{2}$$ by a sufficiently large linear function. The article resolves the hardest cases where $$l$$ is linearly close to $$0$$ or close to $$\binom{k}{2}$$, and provides generalizations to hypergraphs. 
    more » « less