With the rise of AI, algorithms have become better at learning underlying patterns from the training data including ingrained social biases based on gender, race, etc. Deployment of such algorithms to domains such as hiring, healthcare, law enforcement, etc. has raised serious concerns about fairness, accountability, trust and interpretability in machine learning algorithms. To alleviate this problem, we propose D-BIAS, a visual interactive tool that embodies human-in-the-loop AI approach for auditing and mitigating social biases from tabular datasets. It uses a graphical causal model to represent causal relationships among different features in the dataset and as a medium to inject domain knowledge. A user can detect the presence of bias against a group, say females, or a subgroup, say black females, by identifying unfair causal relationships in the causal network and using an array of fairness metrics. Thereafter, the user can mitigate bias by refining the causal model and acting on the unfair causal edges. For each interaction, say weakening/deleting a biased causal edge, the system uses a novel method to simulate a new (debiased) dataset based on the current causal model while ensuring a minimal change from the original dataset. Users can visually assess the impact of their interactions on different fairness metrics, utility metrics, data distortion, and the underlying data distribution. Once satisfied, they can download the debiased dataset and use it for any downstream application for fairer predictions. We evaluate D-BIAS by conducting experiments on 3 datasets and also a formal user study. We found that D-BIAS helps reduce bias significantly compared to the baseline debiasing approach across different fairness metrics while incurring little data distortion and a small loss in utility. Moreover, our human-in-the-loop based approach significantly outperforms an automated approach on trust, interpretability and accountability.
more »
« less
This content will become publicly available on November 23, 2026
C2BM: Causal Concept Disentanglement for Fair MultimodalCOVID-19 Detection
Algorithmic bias in COVID-19 detection systems poses aserious threat to equitable pandemic response, asdemographicdisparities in model performance risk worsening healthoutcomes across vulnerable populations. We present anadoptedCausal Concept Bottleneck Model (C2BM) framework thatsystematically addresses fairness in multimodal COVID-19detection by learning interpretable concepts from chest CTscans and patient metadata. Our approach targets theCountry → Institution → COVID causal pathway throughprincipledinterventions, achieving substantial bias reduction: age andgender demographic parity differences decrease from 51.15%to 18.50% (64% reduction), gender disparate impact improvesfrom 0.6475 to 0.9812 (51% improvement), whilepreserving 98.45% diagnostic F1-score. Throughcomprehensive evaluation across four model variants, wedemonstrate that causal interventions enable stable andreproduciblefairness improvements without compromising clinicalutility. Our work establishes that principled causalreasoning canachieve practical fairness-accuracy trade-offs in COVID-19detection systems, providing actionable guidance forequitable healthcare AI deployment.
more »
« less
- PAR ID:
- 10649634
- Publisher / Repository:
- Proceedings of the 2025 AAAI Fall Symposium Series
- Date Published:
- Journal Name:
- Proceedings of the AAAI Symposium Series
- Volume:
- 7
- Issue:
- 1
- ISSN:
- 2994-4317
- Page Range / eLocation ID:
- 567 to 575
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recently, there has been an increase in efforts to understand how large language models (LLMs) propagate and amplify social biases. Several works have utilized templates for fairness evaluation, which allow researchers to quantify social biases in the absence of test sets with protected attribute labels. While template evaluation can be a convenient and helpful diagnostic tool to understand model deficiencies, it often uses a simplistic and limited set of templates. In this paper, we study whether bias measurements are sensitive to the choice of templates used for benchmarking. Specifically, we investigate the instability of bias measurements by manually modifying templates proposed in previous works in a semantically-preserving manner and measuring bias across these modifications. We find that bias values and resulting conclusions vary considerably across template modifications on four tasks, ranging from an 81% reduction (NLI) to a 162% increase (MLM) in (task-specific) bias measurements. Our results indicate that quantifying fairness in LLMs, as done in current practice, can be brittle and needs to be approached with more care and caution.more » « less
-
Fairness Artificial Intelligence (AI) aims to identify and mitigate bias throughout the AI development process, spanning data collection, modeling, assessment, and deployment—a critical facet of establishing trustworthy AI systems. Tackling data bias through techniques like reweighting samples proves effective for promoting fairness. This paper undertakes a systematic exploration of reweighting samples for conventional Machine-Learning (ML) models, utilizing five models for binary classification on datasets such as Adult Income and COMPAS, incorporating various protected attributes. In particular, AI Fairness 360 (AIF360) from IBM, a versatile open-source library aimed at identifying and mitigating bias in machine-learning models throughout the entire AI application lifecycle, is employed as the foundation for conducting this systematic exploration. The evaluation of prediction outcomes employs five fairness metrics from AIF360, elucidating the nuanced and model-specific efficacy of reweighting samples in fostering fairness within traditional ML frameworks. Experimental results illustrate that reweighting samples effectively reduces bias in traditional ML methods for classification tasks. For instance, after reweighting samples, the balanced accuracy of Decision Tree (DT) improves to 100%, and its bias, as measured by fairness metrics such as Average Odds Difference (AOD), Equal Opportunity Difference (EOD), and Theil Index (TI), is mitigated to 0. However, reweighting samples does not effectively enhance the fairness performance of K Nearest Neighbor (KNN). This sheds light on the intricate dynamics of bias, underscoring the complexity involved in achieving fairness across different models and scenarios.more » « less
-
Achieving fairness in learning models is currently an imperative task in machine learning. Meanwhile, recent research showed that fairness should be studied from the causal perspective, and proposed a number of fairness criteria based on Pearl's causal modeling framework. In this paper, we investigate the problem of building causal fairness-aware generative adversarial networks (CFGAN), which can learn a close distribution from a given dataset, while also ensuring various causal fairness criteria based on a given causal graph. CFGAN adopts two generators, whose structures are purposefully designed to reflect the structures of causal graph and interventional graph. Therefore, the two generators can respectively simulate the underlying causal model that generates the real data, as well as the causal model after the intervention. On the other hand, two discriminators are used for producing a close-to-real distribution, as well as for achieving various fairness criteria based on causal quantities simulated by generators. Experiments on a real-world dataset show that CFGAN can generate high quality fair data.more » « less
-
Fairness is increasingly recognized as a critical component of machine learning systems. However, it is the underlying data on which these systems are trained that often reflect discrimination, suggesting a database repair problem. Existing treatments of fairness rely on statistical correlations that can be fooled by statistical anomalies, such as Simpson's paradox. Proposals for causality-based definitions of fairness can correctly model some of these situations, but they require specification of the underlying causal models. In this paper, we formalize the situation as a database repair problem, proving sufficient conditions for fair classifiers in terms of admissible variables as opposed to a complete causal model. We show that these conditions correctly capture subtle fairness violations. We then use these conditions as the basis for database repair algorithms that provide provable fairness guarantees about classifiers trained on their training labels. We evaluate our algorithms on real data, demonstrating improvement over the state of the art on multiple fairness metrics proposed in the literature while retaining high utility.more » « less
An official website of the United States government
