skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 1, 2026

Title: Doping a Fractional Quantum Anomalous Hall Insulator
We study novel itinerant phases that can be accessed by doping a fractional quantum anomalous Hall (FQAH) insulator, with a focus on the experimentally observed Jain states at lattice filling 𝜈 =𝑝/(2⁒𝑝 +1). Unlike in the lowest Landau level, where charge motion is confined into cyclotron orbits, the charged excitations in the FQAH occupy Bloch states with well-defined crystal momenta. At a nonzero doping density, this feature enables the formation of itinerant states of the doped anyons just beyond the FQAH plateau region. Focusing on the vicinity of 𝜈 =2/3, we describe a few possible itinerant states, including a topological superconductor with chiral neutral fermion edge modes as well as a more exotic pair density wave (PDW) superconductor with non-Abelian topological order. A Fermi liquid metal with a doping-induced period-3 charge density wave also occurs naturally in our analysis. This Fermi liquid (as well as the PDW) arises from pairing instabilities of a composite Fermi liquid metal that can emerge near filling 2/3. Though inspired by the theory of anyon superconductivity, we explain how our construction is qualitatively different. At a general Jain filling 𝜈 =𝑝/(2⁒𝑝 +1), the same analytical framework leads to a wider variety of phases, including higher-charge superconductors and generalized composite Fermi liquids. We predict unusual physical signatures associated with each phase and analyze the crossover between different temperature regimes. These results provide a proof-of-principle that exotic itinerant phases can be stabilized by correlations intrinsic to the FQAH setup.  more » « less
Award ID(s):
2206305
PAR ID:
10650594
Author(s) / Creator(s):
;
Publisher / Repository:
Physical Review X
Date Published:
Journal Name:
Physical Review X
Volume:
15
Issue:
3
ISSN:
2160-3308
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract New phases of matter emerge at the edge of magnetic instabilities, which can occur in materials with moments that are localized, itinerant or intermediate between these extremes. In local moment systems, such as heavy fermions, the magnetism can be tuned towards a zero-temperature transition at a quantum critical point (QCP) via pressure, chemical doping, and, rarely, magnetic field. By contrast, in itinerant moment systems, QCPs are more rare, and they are induced by pressure or doping; there are no known examples of field induced transitions. This means that no universal behaviour has been established across the whole itinerant-to-local moment rangeβ€”a substantial gap in our knowledge of quantum criticality. Here we report an itinerant antiferromagnet, Ti3Cu4, that can be tuned to a QCP by a small magnetic field. We see signatures of quantum criticality and the associated non-Fermi liquid behaviour in thermodynamic and transport measurements, while band structure calculations point to an orbital-selective, spin density wave ground state, a consequence of the square net structural motif in Ti3Cu4. Ti3Cu4thus provides a platform for the comparison and generalisation of quantum critical behaviour across the whole spectrum of magnetism. 
    more » « less
  2. Abstract The class ofAV3Sb5(A=K, Rb, Cs) kagome metals hosts unconventional charge density wave states seemingly intertwined with their low temperature superconducting phases. The nature of the coupling between these two states and the potential presence of nearby, competing charge instabilities however remain open questions. This phenomenology is strikingly highlighted by the formation of two β€˜domes’ in the superconducting transition temperature upon hole-doping CsV3Sb5. Here we track the evolution of charge correlations upon the suppression of long-range charge density wave order in the first dome and into the second of the hole-doped kagome superconductor CsV3Sb5βˆ’xSnx. Initially, hole-doping drives interlayer charge correlations to become short-ranged with their periodicity diminished along the interlayer direction. Beyond the peak of the first superconducting dome, the parent charge density wave state vanishes and incommensurate, quasi-1D charge correlations are stabilized in its place. These competing, unidirectional charge correlations demonstrate an inherent electronic rotational symmetry breaking in CsV3Sb5, and reveal a complex landscape of charge correlations within its electronic phase diagram. Our data suggest an inherent 2kfcharge instability and competing charge orders in theAV3Sb5class of kagome superconductors. 
    more » « less
  3. Pair density waves (PDWs) are a inhomogeneous superconducting states whose Cooper pairs possess a finite momentum resulting in a oscillatory gap in space, even in the absence of an external magnetic field. There is growing evidence for the existence of PDW superconducting order in many strongly correlated materials, particularly in the cuprate superconductors and in several other different types of systems. A feature of the PDW state is that inherently it has a CDW as a composite order associated with it. Here we study the structure of the electronic topological defects of the PDW, paying special attention to the half-vortex and its electronic structure that can be detected in STM experiments. We discuss tell-tale signatures of the defects in violations of inversion symmetry, in the excitation spectrum and their spectral functions in the presence of topological defects. We discuss the β€œFermi surface” topology of Bogoliubov quasiparticle of the PDWphases, and we briefly discuss the role of quasiparticle interference. 
    more » « less
  4. Abstract A pair-density-wave (PDW) is a superconducting state with an oscillating order parameter. A microscopic mechanism that can give rise to it has been long sought but has not yet been established by any controlled calculation. Here we report a density-matrix renormalization-group (DMRG) study of an effectivet-J-Vmodel, which is equivalent to the Holstein-Hubbard model in a strong-coupling limit, on long two-, four-, and six-leg triangular cylinders. While a state with long-range PDW order is precluded in one dimension, we find strong quasi-long-range PDW order with a divergent PDW susceptibility as well as the spontaneous breaking of time-reversal and inversion symmetries. Despite the strong interactions, the underlying Fermi surfaces and electron pockets around theKand$${K}^{\prime}$$ K β€² points in the Brillouin zone can be identified. We conclude that the state is valley-polarized and that the PDW arises from intra-pocket pairing with an incommensurate center of mass momentum. In the two-leg case, the exponential decay of spin correlations and the measured central chargecβ€‰β‰ˆβ€‰1 are consistent with an unusual realization of a Luther-Emery liquid. 
    more » « less
  5. Crystalline graphene heterostructures, namely, Bernal bilayer graphene (BBLG) and rhombohedral trilayer graphene (RTLG), for example, subject to perpendicular electric displacement fields, display a rich confluence of competing orders, resulting in a valley-degenerate, spin-polarized half-metal at moderate doping, and a spin- and valley-polarized (nondegenerate) quarter-metal at lower doping. Here we show that such a quarter-metal can be susceptible toward the nucleation of a unique spin- and valley-polarized superconducting ground state, accommodating odd-parity (dominantly 𝑝 wave in BBLG and 𝑓 wave in RTLG) interlayer Cooper pairs that break the translational symmetry, giving rise to a Kekule (in BBLG) or columnar (in RTLG) pair density wave. Due to the trigonal warping in the normal state, the superconducting ground state produces threefold rotationally symmetric isolated Fermi rings of normal fermions, which can manifest via linear in temperature scaling of the specific heat. We present scaling of the zero-temperature pairing amplitude and the transition temperature of such pair density wave in the presence of trigonally warped disconnected, annular, and simply connected Fermi rings in the normal state, subject to an effective attractive interaction within a mean-field approximation. 
    more » « less