skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 10, 2026

Title: Exploring the Design of Pedagogical Agent Roles in Collaborative STEM+C Learning
This paper explores the design of two types of pedagogical agents—teaching and peer—in a collaborative STEM+C learning environment, C2STEM, where high school students learn physics (kinematics) and computing by building computational models that simulate the motion of objects. Through in-depth case study interviews with teachers and students, we identify role-based features for these agents to support collaborative learning in open-ended STEM+C learning environments. We propose twelve design principles—four for teaching agents, four for peer agents, and four shared by both—contributing to foundational guidelines for developing agents that enhance collaborative learning through computational modeling.  more » « less
Award ID(s):
2327708
PAR ID:
10650759
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
International Society of the Learning Sciences
Date Published:
Page Range / eLocation ID:
330 to 334
Subject(s) / Keyword(s):
pedagogical agents human-in-th-loop design LLMs
Format(s):
Medium: X
Location:
https://repository.isls.org//handle/1/11867
Sponsoring Org:
National Science Foundation
More Like this
  1. Purpose This study aimed to evaluate the impact of active learning and competition on student engagement, motivation, and learning in a STEM-focused summer workshop. This was achieved through exposing K-12 high school students to experiential activities related to concepts within the realm of medicine and engineering. The research question asked was whether these instructional approaches could enhance student interest and effectiveness in understanding complex biomedical and engineering concepts and achieving the intended goals. Methods The workshop, conducted at Michigan Technological University, involved four distinct classes: Wound Healing, Robotic Arm Construction, C-section Simulation, and Engineering Design. Each class included an interactive lecture, a teamwork activity, and a competitive component. Student engagement, motivation, and perceptions of the teaching style were assessed through questionnaires, and statistical analysis was performed to identify significant differences across the classes. Results The study showed that the Wound Healing and Engineering Design classes, which fostered positive peer interaction the most along with longer time to achieve the tasks, led to higher student engagement and motivation compared to the Robotic Arm and C-section classes. Significant differences were observed in how students perceived the teaching style, with Wound healing and engineering design classes showing more effective instructional approaches. The variability in responses obtained suggests that while competition and active learning were helpful, their effectiveness depended on the complexity and structure of the activities and their relevance to the students’ interests. Conclusion STEM workshops for high school students are most effective when they balance active learning with structured competition, align task complexity with appropriate pre-scaffolding, and incorporate clear, collaborative goals. Future educational strategies should focus on using instructional approaches that aim to align the expectations of students with those of the instructors in order to maximize the effectiveness of STEM outreach programs. 
    more » « less
  2. Zhai, X; Latif, E; Liu, N; Biswas, G; Yin, Y (Ed.)
    Collaborative dialogue offers rich insights into students’ learning and critical thinking, which is essential for personalizing pedagogical agent interactions in STEM+C settings. While large language models (LLMs) facilitate dynamic pedagogical interactions, hallucinations undermine confidence, trust, and instructional value. Retrieval-augmented generation (RAG) grounds LLM outputs in curated knowledge, but requires a clear semantic link between user input and a knowledge base, which is often weak in student dialogue. We propose log-contextualized RAG (LC-RAG), which enhances RAG retrieval by using the environment logs to contextualize collaborative discourse. Our findings show that LCRAG improves retrieval over a discourse-only baseline and allows our collaborative peer agent, Copa, to deliver relevant, personalized guidance that supports students’ critical thinking and epistemic decision-making in a collaborative computational modeling environment, C2STEM. 
    more » « less
  3. Synergistic learning of computational thinking (CT) and STEM has proven to effective in helping students develop better understanding of STEM topics, while simultaneously acquiring CT concepts and practices. With the ubiquity of computational devices and tools, advances in technology,and the globalization of product development, it is important for our students to not only develop multi-disciplinary skills acquired through such synergistic learning opportunities, but to also acquire key collaborative learning and problem-solving skills. In this paper, we describe the design and implementation of a collaborative learning-by-modeling environment developed for high school physics classrooms. We develop systematic rubrics and discuss the results of key evaluation schemes to analyze collaborative synergistic learning of physics and CT concepts and practices. 
    more » « less
  4. Peer assessment, as a form of collaborative learning, can engage students in active learning and improve their learning gains. However, current teaching platforms and programming environments provide little support to integrate peer assessment for in-class programming exercises. We identified challenges in conducting such exercises and adopting peer assessment through formative interviews with instructors of introductory programming courses. To address these challenges, we introduce PuzzleMe, a tool to help Computer Science instructors to conduct engaging in-class programming exercises. PuzzleMe leverages peer assessment to support a collaboration model where students provide timely feedback on their peers' work. We propose two assessment techniques tailored to in-class programming exercises: live peer testing and live peer code review. Live peer testing can improve students' code robustness by allowing them to create and share lightweight tests with peers. Live peer code review can improve code understanding by intelligently grouping students to maximize meaningful code reviews. A two-week deployment study revealed that PuzzleMe encourages students to write useful test cases, identify code problems, correct misunderstandings, and learn a diverse set of problem-solving approaches from peers. 
    more » « less
  5. Student-instructor interactions have an influence on student achievement and perceptions of learning. In college and university settings, large introductory STEM courses are increasingly including Peer-Led Team Learning (PLTL), an evidence-based technique associated with improved student achievement, recruitment, and retention in STEM fields, especially for underserved populations. Within this technique, peer leaders hold a unique position in a student’s education. Peer leaders have relevant experience in that they have had recent success in the courses in which they facilitate student learning, yet, compared to student-faculty or student-teaching assistant relationships, there is minimal imbalance of authority or power. Students might find their peer leaders to be more relatable than faculty or graduate teaching assistants, and may even consider them to be role models. We explored students’ perceptions of peer leader relatability and role model status in relation to students’ achievement and their perceived learning gains in the context of an introductory biology course with an associated PLTL program. The final course grades and self-assessed learning gains of PLTL students who felt they related to their peer leader were compared to those who did not. We also compared final course grades and self-assessed learning gains between PLTL students who viewed their peer leader as a role model versus those who did not. Self-reported learning gains were significantly higher for students who relate to their peer leader, as well as for students who viewed their peer leaders as a role model. There is some support that this trend is stronger for STEM majors versus those who are not enrolled in a STEM program, though the interaction is not significant. Significant differences in overall course grade were only observed between students who reported that they related to their peer leader versus those who did not relate to their peer leader. 
    more » « less