skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Absence of Aerosol Indirect Effect Dependence on Background Climate State in NCAR CESM2
Abstract The aerosol indirect effect (AIE) dominates uncertainty in total anthropogenic aerosol forcing in phase 6 of the Coupled Model Intercomparison Project (CMIP6) models. AIE strength depends on meteorological conditions that have been shown to change between preindustrial (PI) and present-day (PD) climates, such as cloud cover and atmospheric moisture. Hence, AIE strength may depend on background climate state, impacting the dependence of model-based AIE estimates on experiment design or the evolution of AIE strength with intensifying climate change, which has not previously been explicitly evaluated. Using atmosphere-only simulations with prescribed observed sea surface temperatures (SSTs) and sea ice in the National Center for Atmospheric Research (NCAR) Community Earth System Model 2, version 2.1.3 (CESM2), Community Atmosphere Model, version 6.0 (CAM6), model, we impose a PD (2000) aerosol perturbation onto a PI (1850), PD, and PD with a uniform 4 K increase in the SST (PD + 4 K) background climate to assess the dependence of the total aerosol effective radiative forcing (ERF) and AIE on background climate. We find statistically insignificant increases in aerosol ERF when estimated in the different background climates, almost entirely from increases in direct ERF but with some regionally significant compensating signals in PD + 4 K. The absence of an AIE dependence on background climate in our PD simulation may be tied to documented differences in cloud responses to the observed SSTs used in our simulations versus SSTs produced by the fully coupled models from which most cloud feedback studies are derived, known as the “pattern effect.” Our findings indicate that AIE and aerosol forcing overall may not have a strong dependence on the background climate state in the near future but could regionally under extreme climate change. Significance StatementDiverse model representations of aerosol–cloud interactions strongly contribute to uncertainty in historical anthropogenic aerosol forcing and are associated with uncertainty in climate sensitivity. This study aims to highlight the dependence of aerosol indirect effects on the background climate state in Community Earth System Model 2, version 2.1.3 (CESM2), Community Atmosphere Model, version 6.0 (CAM6), by identifying microphysical and meteorological changes between aerosol-driven atmospheric responses in present-day and preindustrial climate states to understand anthropogenic aerosol-driven forcing more thoroughly.  more » « less
Award ID(s):
2235177
PAR ID:
10656329
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Climate
Volume:
38
Issue:
1
ISSN:
0894-8755
Page Range / eLocation ID:
147 to 163
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The parameterization of subgrid‐scale processes such as boundary layer (PBL) turbulence introduces uncertainty in Earth System Model (ESM) results. This uncertainty can contribute to or exacerbate existing biases in representing key physical processes. This study analyzes the influence of tunable parameters in an experimental version of the Cloud Layers Unified by Binormals (CLUBBX) scheme. CLUBB is the operational PBL parameterization in the Community Atmosphere Model version 6 (CAM6), the atmospheric component of the Community ESM version 2 (CESM2). We perform the Morris one‐at‐a‐time (MOAT) parameter sensitivity analysis using short‐term (3‐day), initialized hindcasts of CAM6‐CLUBBX with 24 unique initial conditions. Several input parameters modulating vertical momentum flux appear most influential for various regionally‐averaged quantities, namely surface stress and shortwave cloud forcing (SWCF). These parameter sensitivities have a spatial dependence, with parameters governing momentum flux most influential in regions of high vertical wind shear (e.g., the mid‐latitude storm tracks). We next evaluate several experimental 20‐year simulations of CAM6‐CLUBBX with targeted parameter perturbations. We find that parameter perturbations produce similar physical mechanisms in both short‐term and long‐term simulations, but these physical responses can be muted due to nonlinear feedbacks manifesting over time scales longer than 3 days, thus causing differences in how output metrics respond in the long‐term simulations. Analysis of turbulent fluxes in CLUBBX indicates that the influential parameters affect vertical fluxes of heat, moisture, and momentum, providing physical pathways for the sensitivities identified in this study. 
    more » « less
  2. Abstract Aerosol‐cloud interactions (ACI) in warm clouds are the primary source of uncertainty in effective radiative forcing (ERF) during the historical period and, by extension, inferred climate sensitivity. The ERF due to ACI (ERFaci) is composed of the radiative forcing due to changes in cloud microphysics and cloud adjustments to microphysics. Here, we examine the processes that drive ERFaci using a perturbed parameter ensemble (PPE) hosted in CAM6. Observational constraints on the PPE result in substantial constraints in the response of cloud microphysics and macrophysics to anthropogenic aerosol, but only minimal constraint on ERFaci. Examination of cloud and radiation processes in the PPE reveal buffering of ERFaci by the interaction of precipitation efficiency and radiative susceptibility. 
    more » « less
  3. null (Ed.)
    The quasi-biennial oscillation (QBO) and sudden stratospheric warmings (SSWs) during the Last Glacial Maximum (LGM) are investigated in simulations using the Whole Atmosphere Community Climate Model version 6 (WACCM6). We find that the period of QBO, which is 27 months in the preindustrial and modern climate simulations, was 33 months in the LGM simulation using the proxy sea surface temperatures (SSTs) and 41 months using the model-based LGM SSTs. We show that the longer QBO period in the LGM is due to weaker wave forcing. The WACCM6 simulations of the LGM, preindustrial, and modern climates do not support previous modeling work that suggests that the QBO amplitude is smaller (larger) in a warmer (colder) climate. We find that SSWs in the LGM occurred later in the year, as compared to the preindustrial and modern climate, but that time of the final warming was similar. The difference in SSW frequency is inconclusive. 
    more » « less
  4. Abstract. There has been a growing concern that most climate models predict precipitation that is too frequent, likely due to lack of reliable subgrid variabilityand vertical variations in microphysical processes in low-level warm clouds.In this study, the warm-cloud physics parameterizations in the singe-columnconfigurations of NCAR Community Atmospheric Model version 6 and 5 (SCAM6and SCAM5, respectively) are evaluated using ground-based and airborneobservations from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Aerosol and Cloud Experiments in the EasternNorth Atlantic (ACE-ENA) field campaign near the Azores islands during2017–2018. The 8-month single-column model (SCM) simulations show that both SCAM6 and SCAM5 cangenerally reproduce marine boundary layer cloud structure, majormacrophysical properties, and their transition. The improvement in warm-cloud properties from the Community Atmospheric Model 5 and 6 (CAM5 to CAM6) physics can be found through comparison with the observations. Meanwhile, both physical schemes underestimate cloud liquidwater content, cloud droplet size, and rain liquid water content butoverestimate surface rainfall. Modeled cloud condensation nuclei (CCN)concentrations are comparable with aircraft-observed ones in the summer but areoverestimated by a factor of 2 in winter, largely due to the biases in thelong-range transport of anthropogenic aerosols like sulfate. We also testthe newly recalibrated autoconversion and accretion parameterizations thataccount for vertical variations in droplet size. Compared to theobservations, more significant improvement is found in SCAM5 than in SCAM6.This result is likely explained by the introduction of subgrid variationsin cloud properties in CAM6 cloud microphysics, which further suppresses thescheme's sensitivity to individual warm-rain microphysical parameters. Thepredicted cloud susceptibilities to CCN perturbations in CAM6 are within areasonable range, indicating significant progress since CAM5 which produces anaerosol indirect effect that is too strong. The present study emphasizes theimportance of understanding biases in cloud physics parameterizations bycombining SCM with in situ observations. 
    more » « less
  5. Abstract Assessing uncertainty in future climate projections requires understanding both internal climate variability and external forcing. For this reason, single‐model initial condition large ensembles (SMILEs) run with Earth System Models (ESMs) have recently become popular. Here we present a new 20‐member SMILE with the Energy Exascale Earth System Model version 1 (E3SMv1‐LE), which uses a “macro” initialization strategy choosing coupled atmosphere/ocean states based on inter‐basin contrasts in ocean heat content (OHC). The E3SMv1‐LE simulates tropical climate variability well, albeit with a muted warming trend over the twentieth century due to overly strong aerosol forcing. The E3SMv1‐LE's initial climate spread is comparable to other (larger) SMILEs, suggesting that maximizing inter‐basin ocean heat contrasts may be an efficient method of generating ensemble spread. We also compare different ensemble spread across multiple SMILEs, using surface air temperature and OHC. The Community Earth system Model version 1, the only ensemble which utilizes a “micro” initialization approach perturbing only atmospheric initial conditions, yields lower spread in the first ∼30 years. The E3SMv1‐LE exhibits a relatively large spread, with some evidence for anthropogenic forcing influencing spread in the late twentieth century. However, systematic effects of differing “macro” initialization strategies are difficult to detect, possibly resulting from differing model physics or responses to external forcing. Notably, the method of standardizing results affects ensemble spread: control simulations for most models have either large background trends or multi‐centennial variability in OHC. This spurious disequlibrium behavior is a substantial roadblock to understanding both internal climate variability and its response to forcing. 
    more » « less