skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Spatial Hypergraph Model Where Epidemic Spread Demonstrates Clear Higher-Order Effects
We demonstrate a spatial hypergraph model that allows us to vary the amount of higher-order structure in the generated hypergraph. Specifically, we can vary from a model that is a pure pairwise graph into a model that is almost a pure hypergraph. We use this spatial hypergraph model to study higher-order effects in epidemic spread. We use a susceptible-infected-recovered-susceptible (SIRS) epidemic model designed to mimic the spread of an airborne pathogen. We study three types of airborne effects that emulate airborne dilution effects. For the scenario of linear dilution, which roughly corresponds to constant ventilation per person as required in many building codes, we see essentially no impact from introducing small hyperedges up to size 15 whereas we do see effects when the hyperedge set is dominated by large hyperedges. Specifically, we track the mean infections after the SIRS epidemic has run for a while so it is in a ?steady state? and find the mean is higher in the large hyperedge regime whereas it is unchanged from pairwise to small hyperedge regime.  more » « less
Award ID(s):
2007481
PAR ID:
10657841
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Nature Switzerland
Date Published:
Page Range / eLocation ID:
43 to 55
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Saxena, Akrati (Ed.)
    We introduce a spatial graph and hypergraph model that smoothly interpolates between a graph with purely pairwise edges and a graph where all connections are in large hyperedges. The key component is a spatial clustering resolution parameter that varies between assigning all the vertices in a spatial region to individual clusters, resulting in the pairwise case, to assigning all the vertices in a spatial region to a single cluster, which results in the large hyperedge case. A key component of this model is that the spatial structure is invariant to the choice of hyperedges. Consequently, this model enables us to study clustering coefficients, graph diffusion, and epidemic spread and how their behavior changes as a function of the higher-order structure in the network with a fixed spatial substrate. We hope that our model will find future uses to distill or explain other behaviors in higher-order networks. 
    more » « less
  2. Complex systems frequently exhibit multi-way, rather than pairwise, interactions. These group interactions cannot be faithfully modeled as collections of pairwise interactions using graphs and instead require hypergraphs. However, methods that analyze hypergraphs directly, rather than via lossy graph reductions, remain limited. Hypergraph motifs hold promise in this regard, as motif patterns serve as building blocks for larger group interactions which are inexpressible by graphs. Recent work has focused on categorizing and counting hypergraph motifs based on the existence of nodes in hyperedge intersection regions. Here, we argue that the relative sizes of hyperedge intersections within motifs contain varied and valuable information. We propose a suite of efficient algorithms for finding top-k triplets of hyperedges based on optimizing the sizes of these intersection patterns. This formulation uncovers interesting local patterns of interaction, finding hyperedge triplets that either (1) are the least similar with each other, (2) have the highest pairwise but not groupwise correlation, or (3) are the most similar with each other. We formalize this as a combinatorial optimization problem and design efficient algorithms based on filtering hyperedges. Our comprehensive experimental evaluation shows that the resulting hyperedge triplets yield insightful information on real-world hypergraphs. Our approach is also orders of magnitude faster than a naive baseline implementation. 
    more » « less
  3. We consider the problem of enumerating optimal solutions for two hypergraph k-partitioning problems, namely, Hypergraph-k-Cut and Minmax-Hypergraph-k-Partition. The input in hypergraph k-partitioning problems is a hypergraph [Formula: see text] with positive hyperedge costs along with a fixed positive integer k. The goal is to find a partition of V into k nonempty parts [Formula: see text]—known as a k-partition—so as to minimize an objective of interest. (1) If the objective of interest is the maximum cut value of the parts, then the problem is known as Minmax-Hypergraph-k-Partition. A subset of hyperedges is a minmax-k-cut-set if it is the subset of hyperedges crossing an optimum k-partition for Minmax-Hypergraph-k-Partition. (2) If the objective of interest is the total cost of hyperedges crossing the k-partition, then the problem is known as Hypergraph-k-Cut. A subset of hyperedges is a min-k-cut-set if it is the subset of hyperedges crossing an optimum k-partition for Hypergraph-k-Cut. We give the first polynomial bound on the number of minmax-k-cut-sets and a polynomial-time algorithm to enumerate all of them in hypergraphs for every fixed k. Our technique is strong enough to also enable an [Formula: see text]-time deterministic algorithm to enumerate all min-k-cut-sets in hypergraphs, thus improving on the previously known [Formula: see text]-time deterministic algorithm, in which n is the number of vertices and p is the size of the hypergraph. The correctness analysis of our enumeration approach relies on a structural result that is a strong and unifying generalization of known structural results for Hypergraph-k-Cut and Minmax-Hypergraph-k-Partition. We believe that our structural result is likely to be of independent interest in the theory of hypergraphs (and graphs). Funding: All authors were supported by NSF AF 1814613 and 1907937. 
    more » « less
  4. We consider hypergraph visualization that represent vertices as points and hyperedges as lines with few bends passing through points of their incident vertices. Guided by point-line incidence theory we show several theoretical results: if every vertex is part of at most two hyperedges, then we can find such a visualization without bends. There exist hypergraphs with three vertices per hyperedge and three hyperedges incident to each vertex requiring an arbitrary number of bends. It is ETR-hard to decide whether an arbitrary hypergraph can be visualized without bends. This only answers some interesting questions for such visualizations and we conclude with many open research questions. 
    more » « less
  5. The division of a social group into subgroups with opposing opinions, which we refer to as opinion disparity, is a prevalent phenomenon in society. This phenomenon has been modeled by including mechanisms such as opinion homophily, bounded confidence interactions, and social reinforcement mechanisms. In this paper, we study a complementary mechanism for the formation of opinion disparity based on higher-order interactions, i.e., simultaneous interactions between multiple agents. We present an extension of the planted partition model for uniform hypergraphs as a simple model of community structure, and we consider the hypergraph Susceptible-Infected-Susceptible (SIS) model on a hypergraph with two communities where the binary ideology can spread via links (pairwise interactions) and triangles (three-way interactions). We approximate this contagion process with a mean-field model and find that for strong enough community structure, the two communities can hold very different average opinions. We determine the regimes of structural and infectious parameters for which this opinion disparity can exist, and we find that the existence of these disparities is much more sensitive to the triangle community structure than to the link community structure. We show that the existence and type of opinion disparities are extremely sensitive to differences in the sizes of the two communities. 
    more » « less