Abstract In the global ocean, more than 380 species are known to ingest microplastics (plastic particles less than 5 mm in size), including mid-trophic forage fishes central to pelagic food webs. Trophic pathways that bioaccumulate microplastics in marine food webs remain unclear. We assess the potential for the trophic transfer of microplastics through forage fishes, which are prey for diverse predators including commercial and protected species. Here, we quantify Northern Anchovy ( Engraulis mordax ) exposure to microplastics relative to their natural zooplankton prey, across their vertical habitat. Microplastic and zooplankton samples were collected from the California Current Ecosystem in 2006 and 2007. We estimated the abundance of microplastics beyond the sampled size range but within anchovy feeding size ranges using global microplastic size distributions. Depth-integrated microplastics (0–30 m depth) were estimated using a depth decay model, accounting for the effects of wind-driven vertical mixing on buoyant microplastics. In this coastal upwelling biome, the median relative exposure for an anchovy that consumed prey 0.287–5 mm in size was 1 microplastic particle for every 3399 zooplankton individuals. Microplastic exposure varied, peaking within offshore habitats, during the winter, and during the day. Maximum exposure to microplastic particles relative to zooplankton prey was higher for juvenile (1:23) than adult (1:33) anchovy due to growth-associated differences in anchovy feeding. Overall, microplastic particles constituted fewer than 5% of prey-sized items available to anchovy. Microplastic exposure is likely to increase for forage fishes in the global ocean alongside declines in primary productivity, and with increased water column stratification and microplastic pollution.
more »
« less
This content will become publicly available on June 1, 2026
Stratification intensity structures zooplankton functional trait composition in a continental shelf system
Abstract Zooplankton composition and distribution influence prey quality and availability for higher trophic levels, yet ecological forces structuring communities are not often resolved on spatial scales relevant to predator–prey encounters (1–10 m). Because continental shelf water columns are often vertically stratified, fine-scale interactions may influence overall biological productivity. Using a towed imaging system, we measured meso- and macrozooplankton abundances (>2.2 mm equivalent spherical diameter) in the South Atlantic Bight between the 25 and 45 m isobaths in August 2021. Zooplankton were parsed into four key traits (size, carbon content, trophic strategy, and swimming speed), and buoyancy frequency was used to identify discrete vertical oceanographic zones. Trait diversity was less variable in mixed waters due to the dominance of low carbon content zooplankton or passive swimmers. Upwelling intrusions generated high chlorophyll-a and sharp stratification, which favoured high-carbon, fast swimming zooplankton. Trait group abundances were often higher in these deeper, sharply stratified waters, suggesting that intrusions generally favour secondary production, with gelatinous organisms gradually becoming more dominant as the pycnocline weakens. The distribution of size classes, however, did not change among water masses. Stratification and mixing generate distinct environments and consistent trait assemblages, potentially improving predictions of community responses to oceanographic structure.
more »
« less
- PAR ID:
- 10658213
- Editor(s):
- Andersen, Ken
- Publisher / Repository:
- ICES Journal of Marine Science
- Date Published:
- Journal Name:
- ICES Journal of Marine Science
- Volume:
- 82
- Issue:
- 6
- ISSN:
- 1054-3139
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Observing multiple size classes of organisms, along with oceanographic properties and water mass origins, can improve our understanding of the drivers of aggregations, yet acquiring these measurements remains a fundamental challenge in biological oceanography. By deploying multiple biological sampling systems, from conventional bottle and net sampling to in situ imaging and acoustics, we describe the spatial patterns of different size classes of marine organisms (several microns to ∼10 cm) in relation to local and regional (m to km) physical oceanographic conditions on the Delaware continental shelf. The imaging and acoustic systems deployed included (in ascending order of target organism size) an imaging flow cytometer (CytoSense), a digital holographic imaging system (HOLOCAM), an In Situ Ichthyoplankton Imaging System (ISIIS, 2 cameras with different pixel resolutions), and multi-frequency acoustics (SIMRAD, 18 and 38 kHz). Spatial patterns generated by the different systems showed size-dependent aggregations and differing connections to horizontal and vertical salinity and temperature gradients that would not have been detected with traditional station-based sampling (∼9-km resolution). A direct comparison of the two ISIIS cameras showed composition and spatial patchiness changes that depended on the organism size, morphology, and camera pixel resolution. Large zooplankton near the surface, primarily composed of appendicularians and gelatinous organisms, tended to be more abundant offshore near the shelf break. This region was also associated with high phytoplankton biomass and higher overall organism abundances in the ISIIS, acoustics, and targeted net sampling. In contrast, the inshore region was dominated by hard-bodied zooplankton and had relatively low acoustic backscatter. The nets showed a community dominated by copepods, but they also showed high relative abundances of soft-bodied organisms in the offshore region where these organisms were quantified by the ISIIS. The HOLOCAM detected dense patches of ciliates that were too small to be captured in the nets or ISIIS imagery. This near-simultaneous deployment of different systems enables the description of the spatial patterns of different organism size classes, their spatial relation to potential prey and predators, and their association with specific oceanographic conditions. These datasets can also be used to evaluate the efficacy of sampling techniques, ultimately aiding in the design of efficient, hypothesis-driven sampling programs that incorporate these complementary technologies.more » « less
-
Fernandez, J (Ed.)Antarctic krill (Euphausia superba) are a key component of the Antarctic ecosystem linking primary and some secondary production to higher trophic levels including fish, penguins, seals, and whales. Understanding their response to environmental stimuli therefore provides insights into the trophic ecology of Antarctic systems. This laboratory study quantified the influence of penguin guano, a presumptive predator cue, chlorophyll concentration and flow speed on krill swimming behavior. In addition, ingestion rates with and without guano were measured. Such inquiries are necessary to determine if predator risk cues modify krill activities in ways that have consequences for other members of the Antarctic trophic web. Krill often exhibited acute turns when guano was present and varied their swimming speeds more when guano was present. These are both indicators of avoidance behavior to the negative chemical cues represented by penguin guano. Similarly, krill’s ingestion rates dropped significantly for a prolonged period of time in the presence of guano. This decrease in feeding will have impacts on krill’s nutritional value to their predators, prey uptake rates (prey survival) and the sequestration of carbon to the deep ocean as krill decrease their defecation rates. This study supports the hypothesis that krill use chemical signals to detect and behaviorally respond to food and predation risk.more » « less
-
Abstract The Antarctic krillEuphausia superbais often considered an herbivore but is notable for its trophic flexibility, which includes feeding on protistan and metazoan zooplankton. Characterizing krill trophic position (TP) is important for understanding carbon and energy flow from phytoplankton to vertebrate predators and to the deep ocean, especially as plankton composition is sensitive to changing climate. We used repeated field sampling and experiments to study feeding by juvenile krill during three austral summers in waters near Palmer Station, Antarctica. Our approach was to combine seasonal carbon budgets, gut fluorescence measurements, imaging flow cytometry, and compound‐specific isotope analysis of amino acids. Field measurements coupled to experimentally derived grazing functional response curves suggest that phytoplankton grazing alone was insufficient to support the growth and basal metabolism of juvenile krill. Phytoplankton consumption by juvenile krill was limited due to inefficient feeding on nanoplankton (2–20 μm), which constituted the majority of autotrophic prey. Mean krill TP and the metazoan dietary fraction increased in years with higher mesozooplankton biomass, which was not coupled to phytoplankton biomass. Comparing TP estimates using δ15N of different amino acids indicated a substantial and consistent food‐web contribution from heterotrophic protists. Phytoplankton, metazoans, and heterotrophic protists all were important contributors to a diverse krill diet that changed substantially among years. Juvenile krill fed mostly on heterotrophic prey during summer near Palmer Station, and this food web complexity should be considered more broadly throughout the changing Southern Ocean.more » « less
-
null (Ed.)Low-latitude waters of the Indian Ocean are warming faster than other major oceans. Most models predict a zooplankton decline due to lower productivity, enhanced metabolism and phytoplankton size shifts that reduce trophic transfer efficiency. In May-June 2019, we investigated mesozooplankton biomass and grazing along the historic 110°E transect line from the International Indian Ocean Expedition (IIOE) of the 1960s. Twenty sampling stations from 39.5 to 11.5°S spanned latitudinal variability from temperate to tropical waters and a pronounced 14°C gradient in mean euphotic zone temperature. Although mesozooplankton size structure was similar along the transect, with smaller (<2 mm) size classes dominant, total biomass increased 3-fold (400 to 1500 mg dry weight m -2 ) from high to low latitude. More dramatically, gut-fluorescence estimates of grazing (total ingestion or % euphotic zone chl a consumed d -1 ) were 14- and 20-fold higher, respectively, in the low-latitude warmer waters. Biomass-normalized grazing rates varied more than 6-fold over the transect, showing a strong temperature relationship (r 2 = 0.85) that exceeded the temperature effects on gut turnover and metabolic rates. Herbivory contributed more to satisfying zooplankton energetic requirements in low-chl a tropical waters than chl a -rich waters at higher latitude. Our unexpected results are inconsistent with trophic amplification of warming effects on phytoplankton to zooplankton, but might be explained by enhanced coupling efficiency via mixotrophy. Additional implications for selective herbivory and top-down grazing control underscore the need for rigorous field studies to understand relationships and validate assumptions about climate change effects on the food webs of tropical oceans.more » « less
An official website of the United States government
