skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hierarchical habitat selection by a predatory fish in a patchy seascape
Faunal habitat selection, or the disproportionate use of available resources, is closely linked to habitat composition and configuration across a seascape. However, the drivers of habitat selection operate across multiple scales and require a hierarchical approach to study. This study combines acoustic telemetry, field survey data, remote sensing, and machine learning to investigate the multi-scale (seascape and patch) habitat selection of spotted seatrout (Cynoscion nebulosus) in Florida Bay, Everglades National Park, USA. Spotted seatrout responded to both scales, as there were three patch-scale (Halodule cover, standard deviation of submerged aquatic vegetation (SAV) cover, and SAV species richness) and one seascape-scale (patch density) predictor in the top four. However, responses were scale-specific, exhibiting logistic responses to seascape-level variables and optimal (specific-range) responses to patch-level characteristics. This study highlights the importance of investigating habitat selection across multiple scales as climate change alters not only species ranges, but local seascapes as well.  more » « less
Award ID(s):
2424122 2025954
PAR ID:
10662506
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Scientific Reports
Volume:
15
Issue:
1
ISSN:
2045-2322
Subject(s) / Keyword(s):
Resource selection functions Spotted seatrout Habitat selection Multi-scale Florida Bay
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Habitat loss is often considered the greatest near‐term threat to biodiversity, while the impact of habitat fragmentation remains intensely debated. A key issue of this debate centers on the problem of scale–landscape or patch–at which to assess the consequences of fragmentation. Yet patterns are often confounded across scales, and experimental designs that could solve this scaling problem remain scarce. We conducted two field experiments in 30 experimental landscapes in which we manipulated habitat loss, fragmentation, and patch size for a community of four insect herbivores that specialize on the cactusOpuntia. In the first experiment, we destroyed 2088Opuntiapatches in either aggregated or random patterns and compared the relative effects of landscape‐scale loss and fragmentation to those of local patch size on species occurrence. This experiment focused on manipulating the relative separation of remaining patches, where we hypothesized that aggregated loss would disrupt dispersal more than random loss, leading to lower occurrence. In the second experiment, we destroyed 759Opuntiapatches to generate landscapes that varied in patch number and size for a given amount of habitat loss and assessed species occurrence. This experiment focused on manipulating the subdivision of remaining habitat, where we hypothesized that an increase in the number of patches for a given amount of loss would lead to negative effects on occurrence. For both, we expected that occurrence would increase with patch size. We find strong evidence for landscape‐scale effects of habitat fragmentation, with aggregated loss and a larger number of patches for a given amount of habitat loss leading to a lower frequency of patches occupied in landscapes. In both experiments, occurrence increased with patch size, yet interactions of patch size and landscape‐scale loss and fragmentation drove species occurrence in patches. Importantly, the direction of effects were consistent across scales and effects of patch size were sufficient to predict the effects of habitat loss and fragmentation across entire landscapes. Our experimental results suggest that changes at both the patch and landscape scales can impact populations, but that a long‐standing pattern—the patch‐size effect—captures much of the key variation shaping patterns of species occurrence. 
    more » « less
  2. Abstract Lakeshore riparian habitats have undergone intensive residential development in many parts of the world. Lakeshore residential development (LRD) is associated with aquatic habitat loss/alteration, including altered macrophyte communities and reduced coarse woody habitat. Yet habitat‐mediated and other generalized effects of LRD on lake biotic communities are not well understood. We used two approaches to examine the relationships among LRD, habitat, and fish community in a set of 57 northern Wisconsin lakes. First, we examined how LRD affected aquatic habitat using mixed linear effects models. Second, we evaluated how LRD affected fish abundance and community structure at both whole‐lake and site‐level spatial scales using generalized linear mixed‐effects models. We found that LRD did not have a significant relationship with the total abundance (all species combined) of fish at either scale. However, there were significant species‐specific responses to LRD at the whole‐lake scale. Species abundances varied across the LRD gradient, with bluegill (Lepomis macrochirus) and mimic shiners (Notropis volucellus) responding positively along the gradient and walleye (Sander vitreus) having the most negative response. We also quantified site‐level habitat associations for each fish species. We found that habitat associations did not inform a species' overall response to LRD, as illustrated by species with similar responses to LRD having vastly different habitat associations. Finally, even with the inclusion of littoral habitat information in models, LRD still had significant effects on species abundances, reflecting a role of LRD in shaping littoral fish communities independent of our measure of littoral habitat alteration. Our results indicated that LRD altered littoral fish communities at the whole‐lake scale through both habitat and non‐habitat‐mediated drivers. 
    more » « less
  3. Abstract Climate and land use change are two of the primary threats to global biodiversity; however, each species within a community may respond differently to these facets of global change. Although it is typically assumed that species use the habitat that is advantageous for survival and reproduction, anthropogenic changes to the environment can create ecological traps, making it critical to assess both habitat selection (e.g. where species congregate on the landscape) and the influence of selected habitats on the demographic processes that govern population dynamics.We used a long‐term (1958–2011), large‐scale, multi‐species dataset for waterfowl that spans the United States and Canada to estimate species‐specific responses to climate and land use variables in a landscape that has undergone significant environmental change across space and time. We first estimated the effects of change in climate and land use variables on habitat selection and population dynamics for nine species. We then hypothesized that species‐specific responses to environmental change would scale with life‐history traits, specifically: longevity, nesting phenology and female breeding site fidelity.We observed species‐level heterogeneity in the demographic and habitat selection responses to climate and land use change, which would complicate community‐level habitat management. Our work highlights the importance of multi‐species monitoring and community‐level analysis, even among closely related species.We detected several relationships between life‐history traits, particularly nesting phenology, and species' responses to environmental change. One species, the early‐nesting northern pintail (Anas acuta), was consistently at the extreme end of responses to land use and climate predictors and has been a species of conservation concern since their population began to decline in the 1980s. They, and the blue‐winged teal, also demonstrated a positive habitat selection response to the proportion of cropland on the landscape that simultaneously reduced abundance the following year, indicative of susceptibility to ecological traps.By distilling the diversity of species' responses to environmental change within a community, our methodological approach and findings will help improve predictions of community responses to global change and can inform multi‐species management and conservation plans in dynamic landscapes that are based on simple tenets of life‐history theory. 
    more » « less
  4. Estuarine submerged aquatic vegetation (SAV) provides vital habitat for macroinvertebrate communities that support diverse food webs and subsequent ecosystem services. Invasive SAV, however, has the potential to alter estuarine food webs through competition with native SAV, resulting in different associated biological communities. In the Mobile-Tensaw Delta (Alabama, USA), the invasive Eurasian milfoil, Myriophyllum spicatum, is fast becoming the dominant SAV, out-competing native SAV such as wild celery, Vallisneria americana. This study investigated the above- and belowground macroinvertebrate assemblages associated with these SAV habitats. We found significantly different assemblages between the SAV, with V. americana supporting more even and diverse epifaunal assemblages, and M. spicatum supporting greater total abundances of macroinvertebrates. Gammarid amphipods were more than 11 times more abundant in M. spicatum, while Polychaete species were threefold more abundant in V. americana. Our results suggest that V. americana may support a more diverse and even community compared to M. spicatum. If so, the continued decline in coverage of native V. americana and invasion of M. spicatum across the Mobile-Tensaw Delta could have system-wide ecological consequences. 
    more » « less
  5. null (Ed.)
    Coastal salt marshes are distributed widely across the globe and are considered essential habitat for many fish and crustacean species. Yet, the literature on fishery support by salt marshes has largely been based on a few geographically distinct model systems, and as a result, inadequately captures the hierarchical nature of salt marsh pattern, process, and variation across space and time. A better understanding of geographic variation and drivers of commonalities and differences across salt marsh systems is essential to informing future management practices. Here, we address the key drivers of geographic variation in salt marshes: hydroperiod, seascape configuration, geomorphology, climatic region, sediment supply and riverine input, salinity, vegetation composition, and human activities. Future efforts to manage, conserve, and restore these habitats will require consideration of how environmental drivers within marshes affect the overall structure and subsequent function for fisheries species. We propose a future research agenda that provides both the consistent collection and reporting of sources of variation in small-scale studies and collaborative networks running parallel studies across large scales and geographically distinct locations to provide analogous information for data poor locations. These comparisons are needed to identify and prioritize restoration or conservation efforts, identify sources of variation among regions, and best manage fisheries and food resources across the globe. Introduction Understanding the drivers of geographic variation in the condition and composition of habitats is crucial to our capacity to generalize management plans across space and time and to clarify and perhaps challenge assumptions of functional equivalence among sites. Broadly defined wetland types such as salt marshes are often assumed to provide similar functions throughout their global range, such as providing nursery habitat for fishery species. However, a growing body of evidence suggests substantial geographic variation in the functioning of salt marsh and other coastal ecosystems (Bradley et al. 2020; Whalen et al. 2020). Variation in ecological patterns and processes within habitat types can alter community structure and dynamics. Local-scale patterns and processes (e.g., patch [10s of meters], local [100s of meters]) can be influenced by processes that occur at larger spatial scales (e.g., regional [kms], global), thereby causing geographic differences in the function and ecosystem service delivery of a given habitat type. Salt marshes (which include vegetated platform, interconnected tidal creeks, fringing mudflats, ponds, and pools) are widely distributed (Fig. 1) and function as valuable nursery habitats by providing key resources for many estuarine species that transition to marine or aquatic habitats as adults (Beck et al. 2001; Minello et al. 2003; Sheaves et al. 2015). However, factors that underlie variability in the delivery of ecological functions are still inadequately understood. Previous studies have explored geographic variation in the function of salt marshes for fish and mobile crustaceans (“nekton”; e.g., Minello et al. 2012, Baker et al. 2013). However, field studies that compare multiple sites across a geographical gradient are typically limited in duration and scale. In addition, the explanatory variables (e.g., elevation, flooding duration, plant structure) collected by smaller scale studies are often inconsistent and therefore limit generalizations across sites. 
    more » « less