skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Ahmed, Fiaz"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Projecting climate change is a generalization problem: We extrapolate the recent past using physical models across past, present, and future climates. Current climate models require representations of processes that occur at scales smaller than model grid size, which have been the main source of model projection uncertainty. Recent machine learning (ML) algorithms hold promise to improve such process representations but tend to extrapolate poorly to climate regimes that they were not trained on. To get the best of the physical and statistical worlds, we propose a framework, termed “climate-invariant” ML, incorporating knowledge of climate processes into ML algorithms, and show that it can maintain high offline accuracy across a wide range of climate conditions and configurations in three distinct atmospheric models. Our results suggest that explicitly incorporating physical knowledge into data-driven models of Earth system processes can improve their consistency, data efficiency, and generalizability across climate regimes.

    more » « less
    Free, publicly-accessible full text available February 7, 2025
  2. Abstract Tropical areas with mean upward motion—and as such the zonal-mean intertropical convergence zone (ITCZ)—are projected to contract under global warming. To understand this process, a simple model based on dry static energy and moisture equations is introduced for zonally symmetric overturning driven by sea surface temperature (SST). Processes governing ascent area fraction and zonal mean precipitation are examined for insight into Atmospheric Model Intercomparison Project (AMIP) simulations. Bulk parameters governing radiative feedbacks and moist static energy transport in the simple model are estimated from the AMIP ensemble. Uniform warming in the simple model produces ascent area contraction and precipitation intensification—similar to observations and climate models. Contributing effects include stronger water vapor radiative feedbacks, weaker cloud-radiative feedbacks, stronger convection-circulation feedbacks, and greater poleward moisture export. The simple model identifies parameters consequential for the inter-AMIP-model spread; an ensemble generated by perturbing parameters governing shortwave water vapor feedbacks and gross moist stability changes under warming tracks inter-AMIP-model variations with a correlation coefficient ∼0.46. The simple model also predicts the multimodel mean changes in tropical ascent area and precipitation with reasonable accuracy. Furthermore, the simple model reproduces relationships among ascent area precipitation, ascent strength, and ascent area fraction observed in AMIP models. A substantial portion of the inter-AMIP-model spread is traced to the spread in how moist static energy and vertical velocity profiles change under warming, which in turn impact the gross moist stability in deep convective regions—highlighting the need for observational constraints on these quantities. Significance Statement A large rainband straddles Earth’s tropics. Most, but not all, climate models predict that this rainband will shrink under global warming; a few models predict an expansion of the rainband. To mitigate some of this uncertainty among climate models, we build a simpler model that only contains the essential physics of rainband narrowing. We find several interconnected processes that are important. For climate models, the most important process is the efficiency with which clouds move heat and humidity out of rainy regions. This efficiency varies among climate models and appears to be a primary reason for why climate models do not agree on the rate of rainband narrowing. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  3. Abstract

    Conditional instability and the buoyancy of plumes drive moist convection but have a variety of representations in model convective schemes. Vertical thermodynamic structure information from Atmospheric Radiation Measurement (ARM) sites and reanalysis (ERA5), satellite-derived precipitation (TRMM3b42), and diagnostics relevant for plume buoyancy are used to assess climate models. Previous work has shown that CMIP6 models represent moist convective processes more accurately than their CMIP5 counterparts. However, certain biases in convective onset remain pervasive among generations of CMIP modeling efforts. We diagnose these biases in a cohort of nine CMIP6 models with subdaily output, assessing conditional instability in profiles of equivalent potential temperature,θe, and saturation equivalent potential temperature,θes, in comparison to a plume model with different mixing assumptions. Most models capture qualitative aspects of theθesvertical structure, including a substantial decrease with height in the lower free troposphere associated with the entrainment of subsaturated air. We define a “pseudo-entrainment” diagnostic that combines subsaturation and aθesmeasure of conditional instability similar to what entrainment would produce under the small-buoyancy approximation. This captures the trade-off between largerθeslapse rates (entrainment of dry air) and small subsaturation (permits positive buoyancy despite high entrainment). This pseudo-entrainment diagnostic is also a reasonable indicator of the critical value of integrated buoyancy for precipitation onset. Models with poorθe/θesstructure (those using variants of the Tiedtke scheme) or low entrainment runs of CAM5, and models with low subsaturation, such as NASA-GISS, lie outside the observational range in this diagnostic.

    more » « less
  4. Herein, we report structural, computational, and conductivity studies on urea-directed self-assembled iodinated triphenylamine (TPA) derivatives. Despite numerous reports of conductive TPAs, the challenges of correlating their solid-state assembly with charge transport properties hinder the efficient design of new materials. In this work, we compare the assembled structures of a methylene urea bridged dimer of di-iodo TPA (1) and the corresponding methylene urea di-iodo TPA monomer (2) with a di-iodo mono aldehyde (3) control. These modifications lead to needle shaped crystals for 1 and 2 that are organized by urea hydrogen bonding, π⋯π stacking, I⋯I, and I⋯π interactions as determined by SC-XRD, Hirshfeld surface analysis, and X-ray photoelectron spectroscopy (XPS). The long needle shaped crystals were robust enough to measure the conductivity by two contact probe methods with 2 exhibiting higher conductivity values (∼6 × 10 −7 S cm −1 ) compared to 1 (1.6 × 10 −8 S cm −1 ). Upon UV-irradiation, 1 formed low quantities of persistent radicals with the simple methylurea 2 displaying less radical formation. The electronic properties of 1 were further investigated using valence band XPS, which revealed a significant shift in the valence band upon UV irradiation (0.5–1.9 eV), indicating the potential of these materials as dopant free p-type hole transporters. The electronic structure calculations suggest that the close packing of TPA promotes their electronic coupling and allows effective charge carrier transport. Our results show that ionic additives significantly improve the conductivity up to ∼2.0 × 10 −6 S cm −1 in thin films, enabling their implementation in functional devices such as perovskite or solid-state dye sensitized solar cells. 
    more » « less
  5. Abstract Linearized wave solutions on the equatorial beta plane are examined in the presence of a background meridional moisture gradient. Of interest is a slow, eastward-propagating n = 1 mode that is unstable at planetary scales and only exists for a small range of zonal wavenumbers ( ). The mode dispersion curve appears as an eastward extension of the westward-propagating equatorial Rossby wave solution. This mode is therefore termed the eastward-propagating equatorial Rossby wave (ERW). The zonal wavenumber-2 ERW horizontal structure consists of a low-level equatorial convergence center flanked by quadrupole off-equatorial gyres, and resembles the horizontal structure of the observed MJO. An analytic, leading-order dispersion relationship for the ERW shows that meridional moisture advection imparts eastward propagation, and that the smallness of a gross moist stability–like parameter contributes to the slow phase speed. The ERW is unstable near planetary scales when low-level easterlies moisten the column. This moistening could come from either zonal moisture advection or surface fluxes or a combination thereof. When westerlies instead moisten the column, the ERW is damped and the westward-propagating long Rossby wave is unstable. The ERW does not exist when the meridional moisture gradient is too weak. A moist static energy budget analysis shows that the ERW scale selection is partly due to finite-time-scale convective adjustment and less effective zonal wind–induced moistening at smaller scales. Similarities in the phase speed, preferred scale, and horizontal structure suggest that the ERW is a beta-plane analog of the MJO. 
    more » « less
  6. Abstract

    An energy budget combining atmospheric moist static energy (MSE) and upper ocean heat content (OHC) is used to examine the processes impacting day-to-day convective variability in the tropical Indian and western Pacific Oceans. Feedbacks arising from atmospheric and oceanic transport processes, surface fluxes, and radiation drive the cyclical amplification and decay of convection around suppressed and enhanced convective equilibrium states, referred to as shallow and deep convective discharge–recharge (D–R) cycles, respectively. The shallow convective D–R cycle is characterized by alternating enhancements of shallow cumulus and stratocumulus, often in the presence of extensive cirrus clouds. The deep convective D–R cycle is characterized by sequential increases in shallow cumulus, congestus, narrow deep precipitation, wide deep precipitation, a mix of detached anvil and altostratus and altocumulus, and once again shallow cumulus cloud types. Transitions from the shallow to deep D–R cycle are favored by a positive “column process” feedback, while discharge of convective instability and OHC by mesoscale convective systems (MCSs) contributes to transitions from the deep to shallow D–R cycle. Variability in the processes impacting MSE is comparable in magnitude to, but considerably more balanced than, variability in the processes impacting OHC. Variations in the quantity of atmosphere–ocean coupled static energy (MSE + OHC) result primarily from atmospheric and oceanic transport processes, but are mainly realized as changes in OHC. MCSs are unique in their ability to rapidly discharge both lower-tropospheric convective instability and OHC.

    more » « less
  7. Abstract Purpose of Review: Review our current understanding of how precipitation is related to its thermodynamic environment, i.e., the water vapor and temperature in the surroundings, and implications for changes in extremes in a warmer climate. Recent Findings: Multiple research threads have i) sought empirical relationships that govern onset of strong convective precipitation, or that might identify how precipitation extremes scale with changes in temperature; ii) examined how such extremes change with water vapor in global and regional climate models under warming scenarios; iii) identified fundamental processes that set the characteristic shapes of precipitation distributions. Summary: While water vapor increases tend to be governed by the Clausius-Clapeyron relationship to temperature, precipitation extreme changes are more complex and can increase more rapidly, particularly in the tropics. Progress may be aided by bringing separate research threads together and by casting theory in terms of a full explanation of the precipitation probability distribution. 
    more » « less
  8. null (Ed.)
  9. Abstract Entrainment of dry tropospheric air can dilute cloud buoyancies and strongly affect the occurrence and intensity of convection. To measure this dry air influence on tropical precipitation, rainfall values that would occur when convection is “protected” from dry air dilution are estimated. An empirical relationship between tropical oceanic precipitation and entraining buoyancy in the lower troposphere (from the surface to 600 hPa) is leveraged. Protected buoyancies are computed by allowing a plume model to entrain saturated air at environmental temperature. These buoyancies are then used to estimate precipitation from protected convection. In most regions, the protected precipitation greatly exceeds the observed precipitation. Warm waters adjoining continents display striking disparities between observed and protected rainfall pointing to rainfall climatologies severely limited by dry air. The most prominent of these regions include the Red Sea and the Persian Gulf, followed by the Caribbean Sea, the Gulf of Mexico, and the seas surrounding the Maritime Continent. We test if similar large precipitation values are realizable in the Community Atmospheric Model (CAM5), wherein the parameterized convection in small (~2° × 2°) pockets is allowed to only entrain saturated air. The precipitation within these pockets shows strong enhancement that is maintained over time, and is compensated by slight reductions in neighboring regions. In the model, protecting convection yields larger precipitation values over ocean than over land; protected precipitation also intensifies in a uniform SST warming experiment. The model experiments suggest that protected pockets in numerical simulations could be used to mimic the consequences of meteorological protection—from closed circulation or moisture shielding effects—that generate extreme precipitation. 
    more » « less