Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We explore eXplainable AI (XAI) to enhance user experience and understand the value of explanations in AI-driven pedagogical decisions within an Intelligent Pedagogical Agent (IPA). Our real-time and personalized explanations cater to students' attitudes to promote learning. In our empirical study, we evaluate the effectiveness of personalized explanations by comparing three versions of the IPA: (1) personalized explanations and suggestions, (2) suggestions but no explanations, and (3) no suggestions. Our results show the IPA with personalized explanations significantly improves students' learning outcomes compared to the other versions.more » « less
-
Deep Reinforcement Learning (Deep RL) has revolutionized the field of Intelligent Tutoring Systems by providing effective pedagogical policies. However, the ``black box'' nature of Deep RL models makes it challenging to understand these policies. This study tackles this challenge by applying fuzzy logic to distill knowledge from Deep RL-induced policies into interpretable IF-THEN Fuzzy Logic Controller (FLC) rules. Our experiments show that these FLC policies significantly outperform expert policy and student decisions, demonstrating the effectiveness of our approach. We propose a Temporal Granule Pattern (TGP) mining algorithm to increase the FLC rules' interpretability further. This work highlights the potential of fuzzy logic and TGP analysis to enhance understanding of Deep RL-induced pedagogical policies.more » « less
-
Humans adopt various problem-solving strategies depending on their mastery level, problem type, and complexity. Many of these problem-solving strategies have been integrated within intelligent problem-solvers to solve structured and complex problems efficiently. One such strategy is the means-ends analysis which involves comparing the goal and the givens of a problem and iteratively setting up subgoal(s) at each step until the subgoal(s) are straightforward to derive from the givens. However, little is known about the impact of explicitly teaching novices such a strategy for structured problem-solving with tutors. In this study, we teach novices a subgoal-directed problem-solving strategy inspired by means-ends analysis using a problem-based training intervention within an intelligent logic-proof tutor. As we analyzed students’ performance and problem-solving approaches after training, we observed that the students who learned the strategy used it more when solving new problems, constructed optimal logic proofs, and outperformed those who did not learn the strategy.more » « less
-
In deductive domains, three metacognitive knowledge types in ascending order are declarative, procedural, and conditional learning. This work leverages Deep Reinforcement Learning (\textit{DRL}) in providing \textit{adaptive} metacognitive interventions to bridge the gap between the three knowledge types and prepare students for future learning across Intelligent Tutoring Systems (ITSs). Students received these interventions that taught \textit{how} and \textit{when} to use a backward-chaining (BC) strategy on a logic tutor that supports a default forward-chaining strategy. Six weeks later, we trained students on a probability tutor that only supports BC without interventions. Our results show that on both ITSs, DRL bridged the metacognitive knowledge gap between students and significantly improved their learning performance over their control peers. Furthermore, the DRL policy adapted to the metacognitive development on the logic tutor across declarative, procedural, and conditional students, causing their strategic decisions to be more autonomous.more » « less
-
Intelligent Tutoring Systems (ITSs) leverage AI to adapt to individual students, and many ITSs employ \emph{pedagogical policies} to decide what instructional action to take next in the face of alternatives. A number of researchers applied Reinforcement Learning (RL) and Deep RL (DRL) to induce effective pedagogical policies. Much of prior work, however, has been developed \emph{independently} for a specific ITS and \emph{cannot directly be applied to another}. In this work, we propose a \textbf{M}ulti-\textbf{T}ask \textbf{L}earning framework that combines Deep \textbf{BI}simulation \textbf{M}etrics and DRL, named \textbf{MTL-BIM}, to induce a unified pedagogical policies for two different ITSs across different domains: logic and probability. Based on empirical classroom results, our unified RL policy performed significantly better than the expert-crafted policies and independently induced DQN policies on both ITSs.more » « less