skip to main content


Search for: All records

Creators/Authors contains: "Beckmann, Karsten"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cranford, Steve (Ed.)
    Electronic switches based on the migration of high-density point defects, or memristors, are poised to revolutionize post-digital electronics. Despite significant research, key mechanisms for filament formation and oxygen transport remain unresolved, hindering our ability to predict and design device properties. For example, experiments have achieved 10 orders of magnitude longer retention times than predicted by current models. Here, using electrical measurements, scanning probe microscopy, and first-principles calculations on tantalum oxide memristors, we reveal that the formation and stability of conductive filaments crucially depend on the thermodynamic stability of the amorphous oxygen-rich and oxygen-poor compounds, which undergo composition phase separation. Including the previously neglected effects of this amorphous phase separation reconciles unexplained discrepancies in retention and enables predictive design of key performance indicators such as retention stability. This result emphasizes non-ideal thermodynamic interactions as key design criteria in post-digital devices with defect densities substantially exceeding those of today’s covalent semiconductors. 
    more » « less
    Free, publicly-accessible full text available August 26, 2025
  2. The oxygen diffusion rate in hafnia (HfO2)-based resistive memory plays a pivotal role in enabling nonvolatile data retention. However, the information retention times obtained in HfO2 resistive memory devices are many times higher than the expected values obtained from oxygen diffusion measurements in HfO2 materials. In this study, we resolve this discrepancy by conducting oxygen isotope tracer diffusion measurements in amorphous hafnia (a-HfO2) thin films. Our results show that the oxygen tracer diffusion in amorphous HfO2 films is orders of magnitude lower than that of previous measurements on monoclinic hafnia (m-HfO2) pellets. Moreover, oxygen tracer diffusion is much lower in denser a-HfO2 films deposited by atomic layer deposition (ALD) than in less dense a-HfO2 films deposited by sputtering. The ALD films yield similar oxygen diffusion times as experimentally measured device retention times, reconciling this discrepancy between oxygen diffusion and retention time measurements. More broadly, our work shows how processing conditions can be used to control oxygen transport characteristics in amorphous materials without long-range crystal order. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  3. Hafnium-oxide based bipolar RRAM was investigated for high-level temporal correlation detection, for in-memory computing. The experimental analog data of HfO2 RRAM, both in RESET and SET regimes was evaluated to detect 10 correlated processes from 25 processes on a 5x5 RRAM array. Our method gave 36,000-53,000 times less energy consumption than that of a previous implementation with phase change memory, and a predicted acceleration of 1600-2100 times the execution time than that of 1xPOWER8 CPU (1 thread) for detecting correlation between 25 processes. 
    more » « less
  4. In this work, hafnium zirconium oxide (HZO)-based 100 × 100 nm2 ferroelectric tunnel junction (FTJ) devices were implemented on a 300 mm wafer platform, using a baseline 65 nm CMOS process technology. FTJs consisting of TiN/HZO/TiN were integrated in between metal 1 (M1) and via 1 (V1) layers. Cross-sectional transmission electron microscopy and energy dispersive x-ray spectroscopy analysis confirmed the targeted thickness and composition of the FTJ film stack, while grazing incidence, in-plane x-ray diffraction analysis demonstrated the presence of orthorhombic phase Pca21 responsible for ferroelectric polarization observed in HZO films. Current measurement, as a function of voltage for both up- and down-polarization states, yielded a tunneling electroresistance (TER) ratio of 2.28. The device TER ratio and endurance behavior were further optimized by insertion of thin Al2O3 tunnel barrier layer between the bottom electrode (TiN) and ferroelectric switching layer (HZO) by tuning the band offset between HZO and TiN, facilitating on-state tunneling conduction and creating an additional barrier layer in off-state current conduction path. Investigation of current transport mechanism showed that the current in these FTJ devices is dominated by direct tunneling at low electric field (E < 0.4 MV/cm) and by Fowler–Nordheim (F–N) tunneling at high electric field (E > 0.4 MV/cm). The modified FTJ device stack (TiN/Al2O3/HZO/TiN) demonstrated an enhanced TER ratio of ∼5 (2.2× improvement) and endurance up to 106 switching cycles. Write voltage and pulse width dependent trade-off characteristics between TER ratio and maximum endurance cycles (Nc) were established that enabled optimal balance of FTJ switching metrics. The FTJ memory cells also showed multi-level-cell characteristics, i.e., 2 bits/cell storage capability. Based on full 300 mm wafer statistics, a switching yield of >80% was achieved for fabricated FTJ devices demonstrating robustness of fabrication and programming approach used for FTJ performance optimization. The realization of CMOS-compatible nanoscale FTJ devices on 300 mm wafer platform demonstrates the promising potential of high-volume large-scale industrial implementation of FTJ devices for various nonvolatile memory applications.

     
    more » « less
  5. The stabilization of the threshold switching characteristics of memristive NbOx is examined as a function of sample growth and device characteristics. Sub-stoichiometric Nb2O5 was deposited via magnetron sputtering and patterned in nanoscale (50×50–170×170nm2) W/Ir/NbOx/TiN devices and microscale (2×2–15×15μm2) crossbar Au/Ru/NbOx/Pt devices. Annealing the nanoscale devices at 700 °C removed the need for electroforming the devices. The smallest nanoscale devices showed a large asymmetry in the IV curves for positive and negative bias that switched to symmetric behavior for the larger and microscale devices. Electroforming the microscale crossbar devices created conducting NbO2 filaments with symmetric IV curves whose behavior did not change as the device area increased. The smallest devices showed the largest threshold voltages and most stable threshold switching. As the nanoscale device area increased, the resistance of the devices scaled with the area as R∝A−1, indicating a crystallized bulk NbO2 device. When the nanoscale device size was comparable to the size of the filaments, the annealed nanoscale devices showed similar electrical responses as the electroformed microscale crossbar devices, indicating filament-like behavior in even annealed devices without electroforming. Finally, the addition of up to 1.8% Ti dopant into the films did not improve or stabilize the threshold switching in the microscale crossbar devices.

     
    more » « less
  6. Material properties of Ga–Sb binary alloy thin films deposited under ultra-high vacuum conditions were studied for analog phase change memory (PCM) applications. Crystallization of this alloy was shown to occur in the temperature range of 180–264 °C, with activation energy >2.5 eV depending on the composition. X-ray diffraction (XRD) studies showed phase separation upon crystallization into two phases, Ga-doped A7 antimony and cubic zinc-blende GaSb. Synchrotron in situ XRD analysis revealed that crystallization into the A7 phase is accompanied by Ga out-diffusion from the grains. X-ray absorption fine structure studies of the local structure of these alloys demonstrated a bond length decrease with a stable coordination number of 4 upon amorphous-to-crystalline phase transformation. Mushroom cell structures built with Ga–Sb alloys on ø110 nm TiN heater show a phase change material resistance switching behavior with resistance ratio >100 under electrical pulse measurements. TEM and Energy Dispersive Spectroscopy (EDS) studies of the Ga–Sb cells after ∼100 switching cycles revealed that partial SET or intermediate resistance states are attained by the variation of the grain size of the material as well as the Ga content in the A7 phase. A mechanism for a reversible composition control is proposed for analog cell performance. These results indicate that Te-free Ga–Sb binary alloys are potential candidates for analog PCM applications. 
    more » « less