skip to main content


Search for: All records

Creators/Authors contains: "Brent, Rebecca"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Black men are underrepresented in engineering in general and computer engineering (CPE) in particular. Using two unique datasets, (1) the Multiple Institution Database for Investigating Engineering Longitudinal Development (MIDFIELD) and (2) 10 interviews with Black men who persisted in or switched away from CPE at two predominantly White institutions, we contextualize the outcomes ofBlack men in CPE at predominantly White institutions and highlight these students' narratives about their educational experiences. We use Schneider's attraction, selection, and attrition framework tobetter understand how institutions shape the educational experiences of Black men in CPE. Our quantitativeresults show that Black men switch majors away from CPE at similar rates to men of otherethnicities, but they have a slightly lower rate of persistence through eight semesters. Black men wholeave CPE do so earlier than they leave other majors. In our qualitative interviews, we find that early,hands-on experiences in CPE during the first year served to select students into it. Persisters betterunderstood what the CPE major entailed than switchers when selecting the major. Attrition was associatedwith poor experiences in foundational courses, lack of caring faculty, and students' reconsiderationof their reasons for choosing the CPE major initially. Our findings have implications for electrical and computer engineering faculty and advisors regarding how they teach and interact with their students, particularly those who are historically minoritized. Should the departments make the changes we suggest, the students would be the ultimate beneficiary of an improved environment for learning. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  2. High aspirations for the future function as powerful motivators for Black students to pursue and persist in undergraduate engineering programs. Students gain mental strength by maintaining high hopes and beliefs for the future. These aspirations can be intrinsic, originating as internal motivators, or extrinsic, coming from various social circles, such as family and friends. Researchers can benefit from investigating the aspirations of Black students to develop more effective ways for faculty and administrators to support students’ dreams and goals. Community Cultural Wealth (CCW) offers an asset-based framework that describes the strengths and knowledge of Communities of Color in terms of familial, linguistic, aspirational, resistant, navigational, and social capital that Students of Color bring to both the classroom and life. Pairing CCW with Ecological Systems Theory (EST) helps expand the understanding of the proximal and distal access students have to their various forms of capital. The different levels of EST – the microsystem, mesosystem, exosystem, macrosystem, and chronosystem – provide a framework for analyzing how students access the CCW capitals. We have combined these two frameworks to create C2WEST, an asset-based contextual theory that offers multiple lenses for viewing how and where in the EST framework individuals access their various types of capital. Using the C2WEST framework, we highlight the different types of aspirational capital of Black students that originate in their microsystem, mesosystem, exosystem, macrosystem, and chronosystem. Aspirational capital is the ability for students to maintain high expectations despite obstacles. We used two case study illustrative examples obtained through interviews with Black students in undergraduate engineering to examine the development and enactment of aspirational capital in the different layers of C2WEST. Researchers thematically coded the interviews to familiarize themselves with the data and then chose quotes from the students that exemplified aspirational capital in the various levels. The C2WEST framework will allow researchers to examine the aspirational capital of Black engineering students and gain a better understanding of the goals of Black engineering students.This framework could allow administrators and engineering educators develop better methods of supporting the academic and personal goals of Black students. By understanding the aspirational capital of students at the different levels, engineering educators will be able to provide students with individually tailored support. Through C2WEST, Black students could also further realize and conceptualize the access they have to their own aspirations regarding future career and life goals. 
    more » « less
  3. The number of students with multicultural experiences are growing in the United States. We define multicultural experiences as the multiple cultures that students experience in their early life and through family, which differs from the culture at their higher education institution. Many students immigrate to the US with their families after spending formative years in other countries, which gives them unique perspectives on multiple cultures. Multicultural engineering students have a different understanding of engineering from those without such experiences. These experiences both provide these students with certain advantages in engineering and present challenges in their educational pursuits. Examining both advantages and challenges provides an opportunity to understand these students’ strengths and adaptation strategies. Engineering is a field that requires new thoughts, insights, and opinions to advance. Their meaningful life experiences (particularly their multicultural experiences) can bring new light to issues in engineering as well. The study utilizes data from a larger mixed-methods study of Black students in engineering for in-depth interview transcripts, survey data, and an identity circle artifact. Two cases were purposefully selected for the current study – both participants were raised by African parents and had an additional international experience in a predominantly White country before studying engineering in the US. Both participants used this third point of reference to reflect on and give a rich description of their experience in the US. Through qualitative analysis of these cases, we will address the question: In what ways do Black students who are first- or second-generation immigrants from Africa and have studied abroad leverage community cultural wealth in engineering in the US? We use Yosso’s Community Cultural Wealth (CCW) framework to highlight the strengths these students leverage in engineering. CCW is an asset-based framework developed to highlight the strengths of the students from Communities of Color. There are six assets used as a guiding lens to inform research in these communities: familial, social, aspirational, navigational, resistance, and linguistic capital that students bring from their familial and community background. This framework names and categorizes the numerous skills Students of Color have obtained through lived experiences and how the students are able to be successful in academia. Furthermore, students have the ability to utilize these capitals to their advantage in order to be successful beyond academia. Exploring the CCW of Black immigrant students from African countries will give researchers a better understanding of the assets and strengths these students possess as well as the challenges they face. Through an examination of the CCW and various forms of capital for two Black immigrant students, we will emphasize the strengths of students with multicultural experiences in the hopes that they will be further valued and supported by university administrators. 
    more » « less
  4. Asset-based theories explain how people can apply their talents and skills to thrive in diverse environments. When applied to engineering education, these theories can highlight the unique strengths of students of color that help them succeed in college and beyond. An asset-based framework allows both students and instructors to see the potential in students in ways that were previously overlooked or unexplored. This paper combines one asset-based framework and a powerful contextual theory to highlight the assets of Black students in engineering. First, Yosso’s Community Cultural Wealth (CCW) framework examines familial, linguistic, aspirational, resistant, navigational, and social capital. Second, Bronfenbrenner’s Ecological Systems Theory (EST) describes the relationships that surround an individual as a set of systems that influence the individual in different ways. We combine the CCW and EST frameworks, to develop the C2WEST framework. This new framework can be used explore the experiences and strengths of Black students in engineering and the contexts that best describe those strengths. The various levels of influence included in EST will be used as a tool for describing the proximity of the assets to the individual as described by CCW. We present an illustrative example to demonstrate the power of combining these two frameworks. We posit that synthesizing these frameworks provides researchers with unique opportunities to analyze interviews based on the type of capital and the impact the particular capital could have on the individual’s engineering journey. In addition to creating a unique way to analyze the experiences of Black engineering students, we anticipate the merged frameworks could be used to help students of Color realize the strengths they bring to the classroom. By identifying their assets, students could feel more empowered in engineering by recognizing the unique strengths they possess. We hope the tool will be used to help students realize their own strengths and for faculty and administrators to further realize how to support students. 
    more » « less
  5. Doctoral advisors are key to ensuring positive outcomes, especially for underrepresented students in STEM fields. In this study, graduate faculty and doctoral students with three or more years in their programs in the AGEP-NC Alliance were surveyed about the advising practices they engaged in (faculty) or received (students). Faculty were also asked about their confidence advising graduate students generally as well as students who are different from themselves demographically and culturally. Students were also asked about their relationship with their advisors. Findings show that faculty are significantly more confident advising students generally than they are advising students who are different from themselves. On all common measures of advising practices, faculty report that they engage in those practices significantly more often than students report experiencing the advising practice from their advisor. Black, Hispanic, and Native American U.S. citizen students report receiving research guidance from their advisors significantly less than White and Asian U.S. citizens or international students. International students are offered teaching opportunities significantly more often than White and Asian students. There was a significant difference in whether students understood their advisor’s expectations and Black, Hispanic, and Native American students were significantly less likely than international students to report that their advisor respects their contributions. We find that there is a clear lack of alignment between faculty confidence and student perceptions of faculty advising. This gap is especially clear in key advising behaviors like research and presentation guidance. Given that the goal of the AGEP program is to prepare underrepresented U.S. citizen students for the professoriate, both the lack of research guidance and lack of opportunity to build teaching experience for these students is troubling. Change is thus required at both the departmental level to improve the climate for all students as well as at the individual faculty advisor level to ensure that all students are treated equitably with high quality advising. 
    more » « less
  6. In recent years, research has associated grade point average (GPA) with a variety of student outcomes during their undergraduate careers. The studies link higher GPAs to students being more likely to graduate in their major, while lower GPAs have been linked to students switching majors or leaving the institution. Further research, which focuses on how Black female and male students remain successful in different engineering degrees, is necessary to identify the underlying elements contributing to their entrance into and exit from engineering disciplines. This quantitative examination of trends among the GPAs of Black women and men is part of a larger NSF-funded mixed-methods study that includes in-depth student interviews of Black students who persisted in and switched from ME. In this quantitative paper, we examine the GPA patterns of Black students in Mechanical Engineering (ME). Students who have ever enrolled in ME have four potential, mutually exclusive, outcomes: 1) they can persist for 12 semesters without graduating; 2) they can graduate in ME within 12 semesters; 3) they can switch to another major; or 4) they can leave school. In this research, we identify the most common GPA patterns associated with graduated ME students. We hypothesize a relationship between distinct GPA patterns and whether a student persists in ME, graduates in ME, switches away from ME, or leaves the institution altogether. This quantitative investigation uses the Multiple-Institution Database for Investigating Engineering Longitudinal Development (MIDFIELD) to collect the cumulative GPA of ME students at each term. We use a functional cluster analysis approach to group similar patterns. First, a function is fit to each student record. Then a cluster analysis is conducted on the function parameters to identify natural groupings in the data. Once students are grouped according to their GPA profile, we examine the other characteristics and outcomes of the group. We present a visual quantitative analysis of the patterns in the GPAs of Black women and men who enroll in ME. Clustering analysis suggests that first-time-in-college (FTIC) Black female students in ME who graduated have a higher proportion of students in the higher GPA clusters than the proportion of FTIC Black male students who graduated in ME. A higher proportion of the male student population is clustered in the lower GPA cluster groups as compared to women in the lower GPA cluster groups. A higher proportion of students who graduated are in the higher GPA clusters than the proportion of graduated students in the lower GPA clusters. 
    more » « less
  7. Our transformative mixed-methods project, funded by the Division of Engineering Education and Centers, responds to calls for more cross-institutional qualitative and longitudinal studies of minorities in engineering education. We seek to identify the factors that promote persistence and graduation as well as attrition for Black students in Electrical Engineering (EE), Computer Engineering (CpE), and Mechanical Engineering (ME). Our work combines quantitative exploration and qualitative interviews to better understand the nuanced and complex nature of retention and attrition in these fields. We are investigating the following overarching research questions: 1. Why do Black men and women choose and persist in, or leave, EE, CpE, and ME? 2. What are the academic trajectories of Black men and women in EE, CpE, and ME? 3. In what ways do these pathways vary by gender or institution? 4. What institutional policies and practices promote greater retention of Black engineering students? In this paper, we report on the results from 79 in-depth interviews with students at Predominantly White Institutions (PWIs) and a Historically Black University (HBCU [or HBU]). We describe emergent findings during Year 3 of our project, with a focus on four papers-in-progress: • Paper # 1: Our project utilized several innovative strategies for collecting narratives from our 79 interviewees. In particular, we developed a card-sorting activity to learn more about students’ reasons for choosing their engineering major. We have explored a variety of ways to analyze the data that illustrate the value of this type of data collection strategy and which will be of value to other researchers interested in decision making where there is a potentially complex set of factors, such as those found in deciding on a major. • Paper # 2: We summarized student responses to a pre-interview climate survey about three domains – Teaching and Learning, Faculty and Peer Interactions, and Belonging and Commitment. We investigated two questions: Are there differences between persisters and switchers? And, are there differences by study major? Results indicate substantial differences between persisters and switchers and some differences between ME and ECE students. • Paper # 3: Preliminary analysis of interviews of 10 HBCU Black students and 10 PWI Black students revealed that students enact several different types of community cultural wealth, particularly family, navigational, aspirational, social and resistant capital. Early results suggest that the HBCU students enacted a different form of family capital that resided in their “HBCU family” and the opportunities that their college-based networks afforded them to succeed in the major. PWI students described various forms of navigational capital and assets that were enacted in order to succeed at their study institutions. Our paper concludes with implications for university policies and practices aimed toward underrepresented students. 
    more » « less
  8. Introduction and Theoretical Frameworks Our study draws upon several theoretical foundations to investigate and explain the educational experiences of Black students majoring in ME, CpE, and EE: intersectionality, critical race theory, and community cultural wealth theory. Intersectionality explains how gender operates together with race, not independently, to produce multiple, overlapping forms of discrimination and social inequality (Crenshaw, 1989; Collins, 2013). Critical race theory recognizes the unique experiences of marginalized groups and strives to identify the micro- and macro-institutional sources of discrimination and prejudice (Delgado & Stefancic, 2001). Community cultural wealth integrates an asset-based perspective to our analysis of engineering education to assist in the identification of factors that contribute to the success of engineering students (Yosso, 2005). These three theoretical frameworks are buttressed by our use of Racial Identity Theory, which expands understanding about the significance and meaning associated with students’ sense of group membership. Sellers and colleagues (1997) introduced the Multidimensional Model of Racial Identity (MMRI), in which they indicated that racial identity refers to the “significance and meaning that African Americans place on race in defining themselves” (p. 19). The development of this model was based on the reality that individuals vary greatly in the extent to which they attach meaning to being a member of the Black racial group. Sellers et al. (1997) posited that there are four components of racial identity: 1. Racial salience: “the extent to which one’s race is a relevant part of one’s self-concept at a particular moment or in a particular situation” (p. 24). 2. Racial centrality: “the extent to which a person normatively defines himself or herself with regard to race” (p. 25). 3. Racial regard: “a person’s affective or evaluative judgment of his or her race in terms of positive-negative valence” (p. 26). This element consists of public regard and private regard. 4. Racial ideology: “composed of the individual’s beliefs, opinions and attitudes with respect to the way he or she feels that the members of the race should act” (p. 27). The resulting 56-item inventory, the Multidimensional Inventory of Black Identity (MIBI), provides a robust measure of Black identity that can be used across multiple contexts. Research Questions Our 3-year, mixed-method study of Black students in computer (CpE), electrical (EE) and mechanical engineering (ME) aims to identify institutional policies and practices that contribute to the retention and attrition of Black students in electrical, computer, and mechanical engineering. Our four study institutions include historically Black institutions as well as predominantly white institutions, all of which are in the top 15 nationally in the number of Black engineering graduates. We are using a transformative mixed-methods design to answer the following overarching research questions: 1. Why do Black men and women choose and persist in, or leave, EE, CpE, and ME? 2. What are the academic trajectories of Black men and women in EE, CpE, and ME? 3. In what way do these pathways vary by gender or institution? 4. What institutional policies and practices promote greater retention of Black engineering students? Methods This study of Black students in CpE, EE, and ME reports initial results from in-depth interviews at one HBCU and one PWI. We asked students about a variety of topics, including their sense of belonging on campus and in the major, experiences with discrimination, the impact of race on their experiences, and experiences with microaggressions. For this paper, we draw on two methodological approaches that allowed us to move beyond a traditional, linear approach to in-depth interviews, allowing for more diverse experiences and narratives to emerge. First, we used an identity circle to gain a better understanding of the relative importance to the participants of racial identity, as compared to other identities. The identity circle is a series of three concentric circles, surrounding an “inner core” representing one’s “core self.” Participants were asked to place various identities from a provided list that included demographic, family-related, and school-related identities on the identity circle to reflect the relative importance of the different identities to participants’ current engineering education experiences. Second, participants were asked to complete an 8-item survey which measured the “centrality” of racial identity as defined by Sellers et al. (1997). Following Enders’ (2018) reflection on the MMRI and Nigrescence Theory, we chose to use the measure of racial centrality as it is generally more stable across situations and best “describes the place race holds in the hierarchy of identities an individual possesses and answers the question ‘How important is race to me in my life?’” (p. 518). Participants completed the MIBI items at the end of the interview to allow us to learn more about the participants’ identification with their racial group, to avoid biasing their responses to the Identity Circle, and to avoid potentially creating a stereotype threat at the beginning of the interview. This paper focuses on the results of the MIBI survey and the identity circles to investigate whether these measures were correlated. Recognizing that Blackness (race) is not monolithic, we were interested in knowing the extent to which the participants considered their Black identity as central to their engineering education experiences. Combined with discussion about the identity circles, this approach allowed us to learn more about how other elements of identity may shape the participants’ educational experiences and outcomes and revealed possible differences in how participants may enact various points of their identity. Findings For this paper, we focus on the results for five HBCU students and 27 PWI students who completed the MIBI and identity circle. The overall MIBI average for HBCU students was 43 (out of a possible 56) and the overall MIBI scores ranged from 36-51; the overall MIBI average for the PWI students was 40; the overall MIBI scores for the PWI students ranged from 24-51. Twenty-one students placed race in the inner circle, indicating that race was central to their identity. Five placed race on the second, middle circle; three placed race on the third, outer circle. Three students did not place race on their identity circle. For our cross-case qualitative analysis, we will choose cases across the two institutions that represent low, medium and high MIBI scores and different ranges of centrality of race to identity, as expressed in the identity circles. Our final analysis will include descriptive quotes from these in-depth interviews to further elucidate the significance of race to the participants’ identities and engineering education experiences. The results will provide context for our larger study of a total of 60 Black students in engineering at our four study institutions. Theoretically, our study represents a new application of Racial Identity Theory and will provide a unique opportunity to apply the theories of intersectionality, critical race theory, and community cultural wealth theory. Methodologically, our findings provide insights into the utility of combining our two qualitative research tools, the MIBI centrality scale and the identity circle, to better understand the influence of race on the education experiences of Black students in engineering. 
    more » « less
  9. null (Ed.)
    In this Research Full Paper we examine the reported experiences of Black students who are majoring in or switched from electrical (EE), computer (CPE), or mechanical (ME) engineering. Prior work has shown different persistence trajectories for Black students in these majors relative to White students, as well as differences between Black men and Black women. We surveyed 79 students at four institutions in the USA, three Predominantly White Institutions and 1 Historically Black University. In all, 33 students who had ever majored in ME, 27 in CPE, and 19 in EE completed a pre-interview survey that asked about aspects of the learning environment, faculty and peer relationships, and perception of belonging. Fifty-six students persisted in these majors while 23 switched to other majors. Compared to switchers, persisters are more likely to feel that the quality of instruction is higher, feel more encouraged by professors and peers to continue, and feel a greater sense of belonging in their departments. ME students are much more likely to experience group learning in their classes than either EE or CPE students and their ME peers are more likely to encourage them to persist. The difference in persistence between EE and CPE may be explained in part by the attraction of the computer science major as an alternative option for computer engineering majors; half of our CPE switchers switched to computer science. However, teaching quality may be an additional factor as CPE students perceived teaching quality to be lower than EE students did. Future research will explore these findings in the context of our in-depth interviews with these students. Keywords—Black Students, Persistence, Classroom Experiences, Faculty-Student Interaction, MIDFIELD 
    more » « less