- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
40
- Availability
-
31
- Author / Contributor
- Filter by Author / Creator
-
-
Brunskill, E (2)
-
Brunskill, E. (2)
-
Doshi-Velez, F (2)
-
Castro da Silva, B (1)
-
Chandak, Y (1)
-
Faisal, A (1)
-
Gottesman, O (1)
-
Gottesman, O. (1)
-
Komorowski, M (1)
-
Kong, W. (1)
-
Learned-Miller, E (1)
-
Liu, Y (1)
-
Liu, Y. (1)
-
Niekum, S (1)
-
Raghu, A (1)
-
Sussex, S. (1)
-
Thomas, P (1)
-
Valiant, G. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
& *Soto, E. (0)
-
- Filter by Editor
-
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Ruiz-Arias, P.M. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
A. Beygelzimer (0)
-
A. Ghate, K. Krishnaiyer (0)
-
A. I. Sacristán, J. C. (0)
-
A. Weinberg, D. Moore-Russo (0)
-
A.I. Sacristán, J.C. Cortés-Zavala (0)
-
ACS (0)
-
AIAA (0)
-
AIAA Propulsion and Energy 2021 (0)
-
AIAA SciTech (0)
-
ASEE Manufacturing Division (0)
-
ASME (0)
-
ASME ICEF (0)
-
ASSOCIATE EDITORS: Bahar, Ivet (Department (0)
-
Abdelaziz, Mohamed (0)
-
Abernethy, Jacob (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2022
-
Kong, W. ; Valiant, G. ; Brunskill, E. ( , International Conference on Artificial Intelligence and Statistics (AISTATS))We study the problem of estimating the expected reward of the optimal policy in the stochastic disjoint linear bandit setting. We prove that for certain settings it is possible to obtain an accurate estimate of the optimal policy value even with a number of samples that is sublinear in the number that would be required to find a policy that realizes a value close to this optima. We establish nearly matching information theoretic lower bounds, showing that our algorithm achieves near optimal estimation error. Finally, we demonstrate the effectiveness of our algorithm on joke recommendation and cancer inhibition dosage selectionmore »problems using real datasets.« less
-
Gottesman, O. ; Liu, Y. ; Sussex, S. ; Brunskill, E. ; Doshi-Velez, F ( , International Conference on Machine Learning)
-
Liu, Y ; Gottesman, O ; Raghu, A ; Komorowski, M ; Faisal, A ; Doshi-Velez, F ; Brunskill, E ( , Advances in neural information processing systems)