skip to main content


Search for: All records

Creators/Authors contains: "Cheng, Ming-C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. An ensemble data-learning approach based on proper orthogonal decomposition (POD) and Galerkin projection (EnPOD-GP) is proposed for thermal simulations of multi-core CPUs to improve training efficiency and the model accuracy for a previously developed global POD-GP method (GPOD-GP). GPOD-GP generates one set of basis functions (or POD modes) to account for thermal behavior in response to variations in dynamic power maps (PMs) in the entire chip, which is computationally intensive to cover possible variations of all power sources. EnPOD-GP however acquires multiple sets of POD modes to significantly improve training efficiency and effectiveness, and its simulation accuracy is independent of any dynamic PM. Compared to finite element simulation, both GPOD-GP and EnPOD-GP offer a computational speedup over 3 orders of magnitude. For a processor with a small number of cores, GPOD-GP provides a more efficient approach. When high accuracy is desired and/or a processor with more cores is involved, EnPOD-GP is more preferable in terms of training effort and simulation accuracy and efficiency. Additionally, the error resulting from EnPOD-GP can be precisely predicted for any random spatiotemporal power excitation. 
    more » « less
    Free, publicly-accessible full text available July 1, 2025
  2. The need for full-chip dynamic thermal simulation for effective runtime thermal management of multicore processors has been growing in recent years due to the rising demand for high-performance computing. In addition to simulation efficiency and accuracy, a high resolution is desirable in order to accurately predict crucial hot spots in the chip. This work investigates a simulation technique derived from proper orthogonal decomposition (POD) for full-chip dynamic thermal simulation of a multicore processor. The POD projects a heat transfer problem onto a mathematical space constituted by a finite set of basis functions (or POD modes) that are generated (or trained) by thermal solution data collected from direct numerical simulation (DNS). Accuracy and efficiency of the POD simulation technique influenced by the quality of thermal data are examined thoroughly, especially in the areas with high thermal gradients. The results show that if the POD modes are trained by good-quality data, the POD simulation offers an accurate prediction of the dynamic thermal distribution in the multicore processor with an extremely small degree of freedom (DoF). A reduction in computational time over four orders of magnitude, compared to the DNS, can be achieved for full-chip dynamic thermal simulation with a resolution as fine as the DNS. The study has also demonstrated that the POD approach can be used to rigorously verify the accuracy of solutions offered by DNS tools. A practical approach is proposed to further enhance the accuracy and efficiency of the proposed full-chip thermal simulation technique. 
    more » « less
  3. A methodology of multi-dimensional physics simulations is investigated based on a data-driven learning algorithm derived from proper orthogonal decomposition (POD). The approach utilizes numerical simulation tools to collect solution data for the problems of interest subjected to parametric variations that may include interior excitations and/or boundary conditions influenced by exterior environments. The POD is applied to process the data and to generate a finite set of basis functions. The problem is then projected from the physical domain onto a mathematical space constituted by its basis functions. The effectiveness of the POD methodology thus depends on the data quality, which relies on the numerical settings implemented in the data collection (or the training). The simulation methodology is developed and demonstrated in a dynamic heat transfer problem for an entire CPU and in a quantum eigenvalue problem for a quantum-dot structure. Encouraging findings are observed for the POD simulation methodology in this investigation, including its extreme efficiency, high accuracy and great adaptability. The models constructed by the POD basis functions are even capable of predicting the solution of the problem beyond the conditions implemented in the training with a good accuracy. 
    more » « less