skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Chi, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 16, 2024
  2. Free, publicly-accessible full text available January 12, 2025
  3. This study introduces a general approach for generating fuzzy logic rules in regression tasks with complex, high-dimensional input spaces. The method leverages the power of encoding data into a \emph{latent} space, where its uniqueness is analyzed to determine whether it merits the distinction of becoming a noteworthy exemplar. The efficacy of the proposed method is showcased through its application in predicting the acceleration of one of the links for the Unimation Puma 560 robot arm, effectively overcoming the challenges posed by non-linearity and noise in the dataset. 
    more » « less
  4. We explore eXplainable AI (XAI) to enhance user experience and understand the value of explanations in AI-driven pedagogical decisions within an Intelligent Pedagogical Agent (IPA). Our real-time and personalized explanations cater to students' attitudes to promote learning. In our empirical study, we evaluate the effectiveness of personalized explanations by comparing three versions of the IPA: (1) personalized explanations and suggestions, (2) suggestions but no explanations, and (3) no suggestions. Our results show the IPA with personalized explanations significantly improves students' learning outcomes compared to the other versions. 
    more » « less
  5. Deep Reinforcement Learning (Deep RL) has revolutionized the field of Intelligent Tutoring Systems by providing effective pedagogical policies. However, the ``black box'' nature of Deep RL models makes it challenging to understand these policies. This study tackles this challenge by applying fuzzy logic to distill knowledge from Deep RL-induced policies into interpretable IF-THEN Fuzzy Logic Controller (FLC) rules. Our experiments show that these FLC policies significantly outperform expert policy and student decisions, demonstrating the effectiveness of our approach. We propose a Temporal Granule Pattern (TGP) mining algorithm to increase the FLC rules' interpretability further. This work highlights the potential of fuzzy logic and TGP analysis to enhance understanding of Deep RL-induced pedagogical policies. 
    more » « less