skip to main content


Search for: All records

Creators/Authors contains: "Chiu, Jennifer"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This poster paper explores how teachers and researchers in a research-practitioner partnership utilize a rubric to evaluate lesson plans in terms of the integration of culturally relevant computer science. Results include that teachers felt able to include opportunities for cultural competence but indicate that additional support is necessary to include opportunities for cultural critique and conceptions of knowledge. The poster presented at this conference will highlight additional supports that teachers may need to develop culturally relevant computer science lesson plans. 
    more » « less
  2. In this study, we examine the reported beliefs of two elementary science teachers who co-taught a four-week engineering project in which students used a computational model to design engineering solutions to reduce water runoff at their school (Lilly et al., 2020). Specifically, we explore the beliefs that elementary science teachers report while enacting an engineering project in two different classroom contexts and how they report that their beliefs may have affected instructional decisions. Classroom contexts included one general class with a larger proportion of students in advanced mathematics and one inclusive class with a larger proportion of students with individualized educational programs. During project implementation, we collected daily surveys and weekly interviews to consider teachers’ beliefs of the class sections, classroom activities, and curriculum. Two researchers performed a thematic analysis of the surveys and interviews to code reflections on teachers’ perceived differences between students in the class sections and their experiences teaching engineering in the class sections. Results suggest that teachers’ beliefs about students in these two different classroom contexts may have influenced opportunities that students had to understand and engage in disciplinary practices. The teachers reported making changes to activities based on their perceptions of student understanding and engagement and to save time which led to different experiences for students in each class section, specifically a more teacher-centered implementation for the inclusive class. Teachers also suggested specific professional development and educative supports to help teachers to support all students to engage in engineering tasks. Thus, it is important to understand teachers’ beliefs to build support for teachers in their implementation of engineering projects that meet the needs of their students and ensure that students have access and support to engage in engineering practices. 
    more » « less
  3. While national frameworks call for the integration of science, technology, engineering, mathematics, and computer science (STEM+CS) in K-12 contexts, few studies consider elementary teachers’ perceptions of implementing STEM+CS projects in science classrooms. This single case study explores elementary science teachers’ perceptions of enacting STEM+CS curricular materials. Survey and interview data were collected over the four-week project and qualitatively coded. Findings demonstrate teachers’ reported struggles to implement unfamiliar disciplines and leverage students’ prior knowledge in familiar disciplines as well as unanticipated consequences of instructional decisions based on perceived student engagement and pacing. Results underscore the value of teacher voice for curricular and professional development and highlight the need for further investigation of how teachers’ perceptions may influence enactment of STEM+CS curricular materials. 
    more » « less
  4. null (Ed.)
    Conceptual models serve as both as a design artifact and an object that communicates understanding about underlying systems. As such, conceptual modeling is considered as a crucial component of engineering design. Peer comparison and critique can help students develop conceptual models, yet little research explores how peer comparison activities can support conceptual model development in engineering settings. Therefore, we investigate why and how fifth-grade students made changes to their conceptual models after a peer comparison during a 4-week engineering design curriculum unit focused on water runoff at their school. Data sources included students’ conceptual models before and after the peer comparison, field notes, and student interviews after the peer comparison. To understand how students described their conceptual models and why any changes may have occurred, we interviewed twelve students and coded these interview transcripts at the utterance level. Results show that peer comparison activities can increase conceptual model quality. Further, peer comparison contributes to a diverse set of additional representations in students’ conceptual models. The study suggests peer comparisons of conceptual modeling may support students in realizing their peers are a great source of information, a critical realization to support positive engineering design experiences in K-12 and higher education. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
    Recent science education reforms, as described in the Framework for K-12 Science Education (NRC, 2012), call for three-dimensional learning that engages students in scientific practices and the use of scientific lenses to learn science content. However, relatively little research at any grade level has focused on how students develop this kind of three-dimensional knowledge that includes crosscutting concepts. This paper aims to contribute to a growing knowledge base that describes how to engage students in three-dimensional learning by exploring to what extent elementary students represent the crosscutting concept systems and system models when engaged in the practice developing and using models as part of an NGSS-aligned curriculum unit. This paper answers the questions: How do students represent elements of crosscutting concepts in conceptual models of water systems? How do students’ representations of crosscutting concepts change related to different task-based scaffolds? To analyze students’ models, we developed and applied a descriptive coding scheme to describe how the students illustrated the flow of water. The results show important differences in how students represented system elements across models. Findings provide insight for the kinds of support that students might need in order to move towards the development of three-dimensional understandings of science content. 
    more » « less
  7. null (Ed.)
    This multiple case study focused on the implementation of a computer-aided design (CAD) simulation to help students engage in engineering design to learn science concepts. Our findings describe three case studies that adopted the same learning design and adapted it to three different populations, settings, and classroom contexts: at the middle-school, high-school, and pre-service teaching levels. Although the classroom orchestration of the particular learning design was customised for specific audiences and contexts, findings from this study suggest that the core components of the learning design, such as content, assessment, and pedagogy, and their alignment among them, resulted in students’ learning. Specifically, results from a pre-post science assessment suggest that the three student groups arrived at similar understanding post-intervention levels, along with a significant aggregate growth in their scientific understanding. Regarding design performance, students in different groups demonstrated different levels of success in meeting design constraints. The findings also suggest that students’ success rate in meeting the design constraints directly influenced their final design performance, where middle-school students had better performance than students in the other groups. That is, across the board, students increased their conceptual understanding of heat transfer, Earth, and solar science and were able to produce feasible designs. Implications of the study include how learning experiences with engineering and science simulations should be designed so that teachers can adopt and adapt materials for their specific audiences, contexts, and settings. 
    more » « less