Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

The standard linear and logistic regression models assume that the response variables are independent, but share the same linear relationship to their corresponding vectors of covariates. The assumption that the response variables are independent is, however, too strong. In many applications, these responses are collected on nodes of a network, or some spatial or temporal domain, and are dependent. Examples abound in financial and meteorological applications, and dependencies naturally arise in social networks through peer effects. Regression with dependent responses has thus received a lot of attention in the Statistics and Economics literature, but there are no strong consistency results unless multiple independent samples of the vectors of dependent responses can be collected from these models. We present computationally and statistically efficient methods for linear and logistic regression models when the response variables are dependent on a network. Given one sample from a networked linear or logistic regression model and under mild assumptions, we prove strong consistency results for recovering the vector of coefficients and the strength of the dependencies, recovering the rates of standard regression under independent observations. We use projected gradient descent on the negative loglikelihood, or negative logpseudolikelihood, and establish their strong convexity and consistency using concentration of measure for dependent random variables.more » « less

Statistical learning theory has largely focused on learning and generalization given independent and identically distributed (i.i.d.) samples. Motivated by applications involving timeseries data, there has been a growing literature on learning and generalization in settings where data is sampled from an ergodic process. This work has also developed complexity measures,which appropriately extend the notion of Rademacher complexity to bound the generalization error and learning rates of hypothesis classes in this setting. Rather than timeseries data, our work is motivated by settings where data is sampled on a network or a spatial domain, and thus do not fit well within the framework of prior work. We provide learning and generalization bounds for data that are complexly dependent, yet their distribution satisfies the standardDobrushin’s condition. Indeed, we show that the standard complexity measures of Gaussian and Rademacher complexities and VC dimension are sufficient measures of complexity for the purposes of bounding the generalization error and learning rates of hypothesis classes in our setting. Moreover, our generalization bounds only degrade by constant factors compared to their i.i.d. analogs, and our learnability bounds degrade by log factors in the size of the trainingset.more » « less

The paper’s abstract in valid LaTeX, without nonstandard macros or \cite commands. Classical distribution testing assumes access to i.i.d. samples from the distribution that is being tested. We initiate the study of Markov chain testing, assuming access to a {\em single trajectory of a Markov Chain.} In particular, we observe a single trajectory X0,…,Xt,… of an unknown, symmetric, and finite state Markov Chain M. We do not control the starting state X0, and we cannot restart the chain. Given our single trajectory, the goal is to test whether M is identical to a model Markov Chain M′, or far from it under an appropriate notion of difference. We propose a measure of difference between two Markov chains, motivated by the early work of Kazakos [78], which captures the scaling behavior of the total variation distance between trajectories sampled from the Markov chains as the length of these trajectories grows. We provide efficient testers and informationtheoretic lower bounds for testing identity of symmetric Markov chains under our proposed measure of difference, which are tight up to logarithmic factors if the hitting times of the model chain M′ is O~(n) in the size of the state space n.more » « less

Given samples from an unknown multivariate distribution p, is it possible to distinguish whether p is the product of its marginals versus p being far from every product distribution? Similarly, is it possible to distinguish whether p equals a given distribution q versus p and q being far from each other? These problems of testing independence and goodnessoffit have received enormous attention in statistics, information theory, and theoretical computer science, with sampleoptimal algorithms known in several interesting regimes of parameters [BFF+01, Pan08, VV17, ADK15, DK16]. Unfortunately, it has also been understood that these problems become intractable in large dimensions, necessitating exponential sample complexity. Motivated by the exponential lower bounds for general distributions as well as the ubiquity of Markov Random Fields (MRFs) in the modeling of highdimensional distributions, we initiate the study of distribution testing on structured multivariate distributions, and in particular the prototypical example of MRFs: the Ising Model. We demonstrate that, in this structured setting, we can avoid the curse of dimensionality, obtaining sample and time efficient testers for independence and goodnessoffit. One of the key technical challenges we face along the way is bounding the variance of functions of the Ising model.more » « less

Classical distribution testing assumes access to i.i.d. samples from the distribution that is being tested. We initiate the study of Markov chain testing, assuming access to a single trajectory of a Markov Chain. In particular, we observe a single trajectory X0,...,Xt,... of an unknown, symmetric, and finite state Markov Chain M. We do not control the starting state X0, and we cannot restart the chain. Given our single trajectory, the goal is to test whether M is identical to a model Markov Chain M0 , or far from it under an appropriate notion of difference. We propose a measure of difference between two Markov chains, motivated by the early work of Kazakos [Kaz78], which captures the scaling behavior of the total variation distance between trajectories sampled from the Markov chains as the length of these trajectories grows. We provide efficient testers and informationtheoretic lower bounds for testing identity of symmetric Markov chains under our proposed measure of difference, which are tight up to logarithmic factors if the hitting times of the model chain M0 is O(n) in the size of the state space n.more » « less

Asynchronous Gibbs sampling has been recently shown to be fastmixing and an accurate method for estimating probabilities of events on a small number of variables of a graphical model satisfying Dobrushin's condition~\cite{DeSaOR16}. We investigate whether it can be used to accurately estimate expectations of functions of {\em all the variables} of the model. Under the same condition, we show that the synchronous (sequential) and asynchronous Gibbs samplers can be coupled so that the expected Hamming distance between their (multivariate) samples remains bounded by O(τlogn), where n is the number of variables in the graphical model, and τ is a measure of the asynchronicity. A similar bound holds for any constant power of the Hamming distance. Hence, the expectation of any function that is Lipschitz with respect to a power of the Hamming distance, can be estimated with a bias that grows logarithmically in n. Going beyond Lipschitz functions, we consider the bias arising from asynchronicity in estimating the expectation of polynomial functions of all variables in the model. Using recent concentration of measure results, we show that the bias introduced by the asynchronicity is of smaller order than the standard deviation of the function value already present in the true model. We perform experiments on a multiprocessor machine to empirically illustrate our theoretical findings.more » « less

Asynchronous Gibbs sampling has been recently shown to be fastmixing and an accurate method for estimating probabilities of events on a small number of variables of a graphical model satisfying Dobrushin's condition~\cite{DeSaOR16}. We investigate whether it can be used to accurately estimate expectations of functions of {\em all the variables} of the model. Under the same condition, we show that the synchronous (sequential) and asynchronous Gibbs samplers can be coupled so that the expected Hamming distance between their (multivariate) samples remains bounded by O(τlogn), where n is the number of variables in the graphical model, and τ is a measure of the asynchronicity. A similar bound holds for any constant power of the Hamming distance. Hence, the expectation of any function that is Lipschitz with respect to a power of the Hamming distance, can be estimated with a bias that grows logarithmically in n. Going beyond Lipschitz functions, we consider the bias arising from asynchronicity in estimating the expectation of polynomial functions of all variables in the model. Using recent concentration of measure results, we show that the bias introduced by the asynchronicity is of smaller order than the standard deviation of the function value already present in the true model. We perform experiments on a multiprocessor machine to empirically illustrate our theoretical findings.more » « less

We prove neartight concentration of measure for polynomial functions of the Ising model, under high temperature, improving the radius of concentration guaranteed by known results by polynomial factors in the dimension (i.e.~the number of nodes in the Ising model). We show that our results are optimal up to logarithmic factors in the dimension. We obtain our results by extending and strengthening the exchangeablepairs approach used to prove concentration of measure in this setting by Chatterjee. We demonstrate the efficacy of such functions as statistics for testing the strength of interactions in social networks in both synthetic and real world data.more » « less