skip to main content


Search for: All records

Creators/Authors contains: "Eghtesad, Taha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 30, 2025
  2. Although researchers have characterized the bug-bounty ecosystem from the point of view of platforms and programs, minimal effort has been made to understand the perspectives of the main workers: bug hunters. To improve bug bounties, it is important to understand hunters’ motivating factors, challenges, and overall benefits. We address this research gap with three studies: identifying key factors through a free listing survey (n=56), rating each factor’s importance with a larger-scale factor-rating survey (n=159), and conducting semi-structured interviews to uncover details (n=24). Of 54 factors that bug hunters listed, we find that rewards and learning opportunities are the most important benefits. Further, we find scope to be the top differentiator between programs. Surprisingly, we find earning reputation to be one of the least important motivators for hunters. Of the challenges we identify, communication problems, such as unresponsiveness and disputes, are the most substantial. We present recommendations to make the bug-bounty ecosystem accommodating to more bug hunters and ultimately increase participation in an underutilized market. 
    more » « less
  3. While cloud computing is the current standard for outsourcing computation, it can be prohibitively expensive for cities and infrastructure operators to deploy services. At the same time, there are underutilized computing resources within cities and local edge-computing deployments. Using these slack resources may enable significantly lower pricing than comparable cloud computing; such resources would incur minimal marginal expenditure since their deployment and operation are mostly sunk costs. However, there are challenges associated with using these resources. First, they are not effectively aggregated or provisioned. Second, there is a lack of trust between customers and suppliers of computing resources, given that they are distinct stakeholders and behave according to their own interests. Third, delays in processing inputs may diminish the value of the applications. To resolve these challenges, we introduce an architecture combining a distributed trusted computing mechanism, such as a blockchain, with an efficient messaging system like Apache Pulsar. Using this architecture, we design a decentralized computation market where customers and suppliers make offers to deploy and host applications. The proposed architecture can be realized using any trusted computing mechanism that supports smart contracts, and any messaging framework with the necessary features. This combination ensures that the market is robust without incurring the input processing delays that limit other blockchain-based solutions. We evaluate the market protocol using game-theoretic analysis to show that deviation from the protocol is discouraged. Finally, we assess the performance of a prototype implementation based on experiments with a streaming computer-vision application. 
    more » « less
  4. Power grids are undergoing major changes due to the rapid adoption of intermittent renewable energy resources and the increased availability of energy storage devices. These trends drive smart-grid operators to envision a future where peer-to-peer energy trading occurs within microgrids, leading to the development of Transactive Energy Systems. Blockchains have garnered significant interest from both academia and industry for their potential application in decentralized TES, in large part due to their high level of resilience. In this paper, we introduce a novel class of attacks against blockchain based TES, which target the gateways that connect market participants to the system. We introduce a general model of blockchain based TES and study multiple threat models and attack strategies. We also demonstrate the impact of these attacks using a testbed based on GridLAB-D and a private Ethereum network. Finally, we study how to mitigate these attack. 
    more » « less
  5. null (Ed.)
    Moving target defense (MTD) is a proactive defense approach that aims to thwart attacks by continuously changing the attack surface of a system (e.g., changing host or network configurations), thereby increasing the adversary’s uncertainty and attack cost. To maximize the impact of MTD, a defender must strategically choose when and what changes to make, taking into account both the characteristics of its system as well as the adversary’s observed activities. Finding an optimal strategy for MTD presents a significant challenge, especially when facing a resourceful and determined adversary who may respond to the defender’s actions. In this paper, we propose a multi-agent partially-observable Markov Decision Process model of MTD and formulate a two-player general-sum game between the adversary and the defender. To solve this game, we propose a multi-agent reinforcement learning framework based on the double oracle algorithm. Finally, we provide experimental results to demonstrate the effectiveness of our framework in finding optimal policies. 
    more » « less
  6. As the number of personal computing and IoT devices grows rapidly, so does the amount of computational power that is available at the edge. Since many of these devices are often idle, there is a vast amount of computational power that is currently untapped, and which could be used for outsourcing computation. Existing solutions for harnessing this power, such as volunteer computing (e.g., BOINC), are centralized platforms in which a single organization or company can control participation and pricing. By contrast, an open market of computational resources, where resource owners and resource users trade directly with each other, could lead to greater participation and more competitive pricing. To provide an open market, we introduce MODiCuM, a decentralized system for outsourcing computation. MODiCuM deters participants from misbehaving-which is a key problem in decentralized systems-by resolving disputes via dedicated mediators and by imposing enforceable fines. However, unlike other decentralized outsourcing solutions, MODiCuM minimizes computational overhead since it does not require global trust in mediation results. We provide analytical results proving that MODiCuM can deter misbehavior, and we evaluate the overhead of MODiCuM using experimental results based on an implementation of our platform. 
    more » « less
  7. Power grids are evolving at an unprecedented pace due to the rapid growth of distributed energy resources (DER) in communities. These resources are very different from traditional power sources as they are located closer to loads and thus can significantly reduce transmission losses and carbon emissions. However, their intermittent and variable nature often results in spikes in the overall demand on distribution system operators (DSO). To manage these challenges, there has been a surge of interest in building decentralized control schemes, where a pool of DERs combined with energy storage devices can exchange energy locally to smooth fluctuations in net demand. Building a decentralized market for transactive microgrids is challenging because even though a decentralized system provides resilience, it also must satisfy requirements like privacy, efficiency, safety, and security, which are often in conflict with each other. As such, existing implementations of decentralized markets often focus on resilience and safety but compromise on privacy. In this paper, we describe our platform, called TRANSAX, which enables participants to trade in an energy futures market, which improves efficiency by finding feasible matches for energy trades, enabling DSOs to plan their energy needs better. TRANSAX provides privacy to participants by anonymizing their trading activity using a distributed mixing service, while also enforcing constraints that limit trading activity based on safety requirements, such as keeping planned energy flow below line capacity. We show that TRANSAX can satisfy the seemingly conflicting requirements of efficiency, safety, and privacy. We also provide an analysis of how much trading efficiency is lost. Trading efficiency is improved through the problem formulation which accounts for temporal flexibility, and system efficiency is improved using a hybrid-solver architecture. Finally, we describe a testbed to run experiments and demonstrate its performance using simulation results. 
    more » « less